A categorical approach to the stable center conjecture

Let G be a connected reductive group over a local non-archimedean field F. The stable center conjecture provides an intrinsic decomposition of the set of equivalence classes of smooth irreducible representations of G(F), which is only slightly coarser than the conjectural decomposition into L-packet...

Full description

Bibliographic Details
Main Authors: Kazhdan, David, Bezrukavnikov, Roman, Varshavsky, Yaakov
Other Authors: Massachusetts Institute of Technology. Department of Mathematics
Format: Article
Published: Société mathématique de France 2018
Online Access:http://hdl.handle.net/1721.1/116254
https://orcid.org/0000-0001-5902-8989
_version_ 1811097273462947840
author Kazhdan, David
Bezrukavnikov, Roman
Varshavsky, Yaakov
author2 Massachusetts Institute of Technology. Department of Mathematics
author_facet Massachusetts Institute of Technology. Department of Mathematics
Kazhdan, David
Bezrukavnikov, Roman
Varshavsky, Yaakov
author_sort Kazhdan, David
collection MIT
description Let G be a connected reductive group over a local non-archimedean field F. The stable center conjecture provides an intrinsic decomposition of the set of equivalence classes of smooth irreducible representations of G(F), which is only slightly coarser than the conjectural decomposition into L-packets. In this work we propose a way to verify this conjecture for depth zero representations. As an illustration of our method, we show that the Bernstein projector to the depth zero spectrum is stable.
first_indexed 2024-09-23T16:57:03Z
format Article
id mit-1721.1/116254
institution Massachusetts Institute of Technology
last_indexed 2024-09-23T16:57:03Z
publishDate 2018
publisher Société mathématique de France
record_format dspace
spelling mit-1721.1/1162542022-10-03T09:22:10Z A categorical approach to the stable center conjecture Kazhdan, David Bezrukavnikov, Roman Varshavsky, Yaakov Massachusetts Institute of Technology. Department of Mathematics Bezrukavnikov, Roman Varshavsky, Yaakov Let G be a connected reductive group over a local non-archimedean field F. The stable center conjecture provides an intrinsic decomposition of the set of equivalence classes of smooth irreducible representations of G(F), which is only slightly coarser than the conjectural decomposition into L-packets. In this work we propose a way to verify this conjecture for depth zero representations. As an illustration of our method, we show that the Bernstein projector to the depth zero spectrum is stable. United States-Israel Binational Science Foundation (Grant 2012365) National Science Foundation (U.S.) (Grant DMS-1102434) Israel Science Foundation (Grant 598/09) Israel Science Foundation (Grant 1017/13) 2018-06-12T15:11:29Z 2018-06-12T15:11:29Z 2015 2018-05-16T18:55:31Z Article http://purl.org/eprint/type/JournalArticle 0303-1179 http://hdl.handle.net/1721.1/116254 Bezrukavnikov, Roman, David Kazhdan, and Yakov Varshavsky. "A Categorial Approach to the Stable Center Conjecture." Astérisque, 369, 2015, pp. 27-97. https://orcid.org/0000-0001-5902-8989 http://smf4.emath.fr/en/Publications/Asterisque/2015/369/html/ Astérisque Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf Société mathématique de France arXiv
spellingShingle Kazhdan, David
Bezrukavnikov, Roman
Varshavsky, Yaakov
A categorical approach to the stable center conjecture
title A categorical approach to the stable center conjecture
title_full A categorical approach to the stable center conjecture
title_fullStr A categorical approach to the stable center conjecture
title_full_unstemmed A categorical approach to the stable center conjecture
title_short A categorical approach to the stable center conjecture
title_sort categorical approach to the stable center conjecture
url http://hdl.handle.net/1721.1/116254
https://orcid.org/0000-0001-5902-8989
work_keys_str_mv AT kazhdandavid acategoricalapproachtothestablecenterconjecture
AT bezrukavnikovroman acategoricalapproachtothestablecenterconjecture
AT varshavskyyaakov acategoricalapproachtothestablecenterconjecture
AT kazhdandavid categoricalapproachtothestablecenterconjecture
AT bezrukavnikovroman categoricalapproachtothestablecenterconjecture
AT varshavskyyaakov categoricalapproachtothestablecenterconjecture