A¹-homotopy invariants of corner skew Laurent polynomial algebras
In this note we prove some structural properties of all the A1-homotopy invariants of corner skew Laurent polynomial algebras. As an application, we compute the mod-l algebraic K-theory of Leavitt path algebras using solely the kernel/cokernel of the incidence matrix. This leads naturally to some va...
Main Author: | |
---|---|
Other Authors: | |
Format: | Article |
Published: |
European Mathematical Publishing House
2018
|
Subjects: | |
Online Access: | http://hdl.handle.net/1721.1/116424 https://orcid.org/0000-0001-5558-9236 |
_version_ | 1826202705367924736 |
---|---|
author | Trigo Neri Tabuada, Goncalo Jorge |
author2 | Massachusetts Institute of Technology. Department of Mathematics |
author_facet | Massachusetts Institute of Technology. Department of Mathematics Trigo Neri Tabuada, Goncalo Jorge |
author_sort | Trigo Neri Tabuada, Goncalo Jorge |
collection | MIT |
description | In this note we prove some structural properties of all the A1-homotopy invariants of corner skew Laurent polynomial algebras. As an application, we compute the mod-l algebraic K-theory of Leavitt path algebras using solely the kernel/cokernel of the incidence matrix. This leads naturally to some vanishing and divisibility properties of the K-theory of these algebras. |
first_indexed | 2024-09-23T12:15:16Z |
format | Article |
id | mit-1721.1/116424 |
institution | Massachusetts Institute of Technology |
last_indexed | 2024-09-23T12:15:16Z |
publishDate | 2018 |
publisher | European Mathematical Publishing House |
record_format | dspace |
spelling | mit-1721.1/1164242022-10-01T08:48:21Z A¹-homotopy invariants of corner skew Laurent polynomial algebras Trigo Neri Tabuada, Goncalo Jorge Massachusetts Institute of Technology. Department of Mathematics Trigo Neri Tabuada, Goncalo Jorge Corner skew Laurent polynomial algebra, Leavitt path algebra, algebraic K-theory, noncommutative mixed motives, noncommutative algebraic geometry In this note we prove some structural properties of all the A1-homotopy invariants of corner skew Laurent polynomial algebras. As an application, we compute the mod-l algebraic K-theory of Leavitt path algebras using solely the kernel/cokernel of the incidence matrix. This leads naturally to some vanishing and divisibility properties of the K-theory of these algebras. National Science Foundation (U.S.). Faculty Early Career Development Program (Award #1350472) Portuguese Foundation for Science and Technology (project UID/MAT/00297/2013 (Centro de Matemática e Aplicações)) 2018-06-19T18:24:13Z 2018-06-19T18:24:13Z 2017-12 2018-05-31T15:59:22Z Article http://purl.org/eprint/type/JournalArticle 1661-6952 http://hdl.handle.net/1721.1/116424 Tabuada, Gonçalo. “$A¹-homotopy invariants of corner skew Laurent polynomial algebras.” Journal of Noncommutative Geometry 11, no. 4 (December 15, 2017): 1627–1643. https://orcid.org/0000-0001-5558-9236 http://dx.doi.org/10.4171/JNCG/11-4-12 Journal of Noncommutative Geometry Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf European Mathematical Publishing House arXiv |
spellingShingle | Corner skew Laurent polynomial algebra, Leavitt path algebra, algebraic K-theory, noncommutative mixed motives, noncommutative algebraic geometry Trigo Neri Tabuada, Goncalo Jorge A¹-homotopy invariants of corner skew Laurent polynomial algebras |
title | A¹-homotopy invariants of corner skew Laurent polynomial algebras |
title_full | A¹-homotopy invariants of corner skew Laurent polynomial algebras |
title_fullStr | A¹-homotopy invariants of corner skew Laurent polynomial algebras |
title_full_unstemmed | A¹-homotopy invariants of corner skew Laurent polynomial algebras |
title_short | A¹-homotopy invariants of corner skew Laurent polynomial algebras |
title_sort | a¹ homotopy invariants of corner skew laurent polynomial algebras |
topic | Corner skew Laurent polynomial algebra, Leavitt path algebra, algebraic K-theory, noncommutative mixed motives, noncommutative algebraic geometry |
url | http://hdl.handle.net/1721.1/116424 https://orcid.org/0000-0001-5558-9236 |
work_keys_str_mv | AT trigoneritabuadagoncalojorge a1homotopyinvariantsofcornerskewlaurentpolynomialalgebras |