Stromal Expression of miR-143/145 Promotes Neoangiogenesis in Lung Cancer Development
The two unrelated miRNAs miR-143 and miR-145, coexpressed from the miR-143/145 cluster, have been proposed to act as tumor suppressors in human cancer, and therapeutic benefits of delivering miR-143 and miR-145 to tumors have been reported. In contrast, we found that tumor-specific deletion of miR-1...
Main Authors: | , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Published: |
American Association for Cancer Research (AACR)
2018
|
Online Access: | http://hdl.handle.net/1721.1/116563 https://orcid.org/0000-0002-9303-057X https://orcid.org/0000-0002-7799-6454 https://orcid.org/0000-0001-5785-8911 |
Summary: | The two unrelated miRNAs miR-143 and miR-145, coexpressed from the miR-143/145 cluster, have been proposed to act as tumor suppressors in human cancer, and therapeutic benefits of delivering miR-143 and miR-145 to tumors have been reported. In contrast, we found that tumor-specific deletion of miR-143/145 in an autochthonous mouse model of lung adenocarcinoma did not affect tumor development. This was consistent with the lack of endogenous miR-143/145 expression in normal and transformed lung epithelium. Surprisingly, miR-143/145 in the tumor microenvironment dramatically promoted tumor growth by stimulating the proliferation of endothelial cells. Loss of miR-143/145 in vivo led to derepression of the miR-145 target CAMK1D, an inhibitory kinase, which when overexpressed prevents mitotic entry of endothelial cells. As a consequence, tumors in miR-143/145-deficient animals exhibited diminished neoangiogenesis, increased apoptosis, and their expansion was limited by the tumor’s ability to co-opt the alveolar vasculature. These findings demonstrate that stromal miR-143/145 promotes tumorigenesis and caution against the use of these miRNAs as agents in cancer therapeutics.SIGNIFICANCE: This study shows that miR-143/145 expressed from the tumor microenvironment stimulates neoangiogenesis and supports tumor expansion in the lung, demonstrating a surprising role for the putative tumor suppressor miRNA cluster in promoting tumorigenesis. We propose inhibition of miR-143/145 as a therapeutic avenue to modulate tumor neoangiogenesis. |
---|