Data-Driven Flight Procedure Simulation and Noise Analysis in a Large-Scale Air Transportation System
Aircraft noise is a growing source of community concern around airports. Despite the introduction of quieter aircraft, increased precision of onboard guidance systems has resulted in new noise impacts driven by overflight frequency effects. Noise issues present a potential barrier to the continued r...
Main Authors: | , |
---|---|
Published: |
2018
|
Online Access: | http://hdl.handle.net/1721.1/116741 |
_version_ | 1826209587709083648 |
---|---|
author | Jensen, Luke L. Hansman, R. John |
author_facet | Jensen, Luke L. Hansman, R. John |
author_sort | Jensen, Luke L. |
collection | MIT |
description | Aircraft noise is a growing source of community concern around airports. Despite the introduction of quieter aircraft, increased precision of onboard guidance systems has resulted in new noise impacts driven by overflight frequency effects. Noise issues present a potential barrier to the continued rollout of advanced operational procedures in the US. This thesis presents a data-driven approach to simulating and communicating noise effects in the flight procedure development and modernization process, with input from multiple stakeholders with varying objectives that are technical, operational, and political in nature.
First, a system-level framework is introduced for developing novel noise-reducing arrival and departure flight procedures, clarifying the role of the analyst given diverse stakeholder objectives. The framework includes relationships between baseline impact assessment, community negotiation, iterative flight procedure development, and formal implementation processes. Variability in stakeholder objectives suggests a need to incorporate noise issues in conjunction with other key operational objectives as part of larger-scale US air transportation system modernization.
As part of this framework development, an airport-level noise modeling method is developed to enable rapid exposure and impact analysis for system-level evaluation of advanced operational procedures. The modeling method and framework are demonstrated by evaluating potential benefits of specific advanced procedures at 35 major airports in the US National Airspace System, including Performance Based Navigation guidance and a speed-managed departure concept. |
first_indexed | 2024-09-23T14:24:50Z |
id | mit-1721.1/116741 |
institution | Massachusetts Institute of Technology |
last_indexed | 2024-09-23T14:24:50Z |
publishDate | 2018 |
record_format | dspace |
spelling | mit-1721.1/1167412019-04-10T22:24:19Z Data-Driven Flight Procedure Simulation and Noise Analysis in a Large-Scale Air Transportation System Jensen, Luke L. Hansman, R. John Aircraft noise is a growing source of community concern around airports. Despite the introduction of quieter aircraft, increased precision of onboard guidance systems has resulted in new noise impacts driven by overflight frequency effects. Noise issues present a potential barrier to the continued rollout of advanced operational procedures in the US. This thesis presents a data-driven approach to simulating and communicating noise effects in the flight procedure development and modernization process, with input from multiple stakeholders with varying objectives that are technical, operational, and political in nature. First, a system-level framework is introduced for developing novel noise-reducing arrival and departure flight procedures, clarifying the role of the analyst given diverse stakeholder objectives. The framework includes relationships between baseline impact assessment, community negotiation, iterative flight procedure development, and formal implementation processes. Variability in stakeholder objectives suggests a need to incorporate noise issues in conjunction with other key operational objectives as part of larger-scale US air transportation system modernization. As part of this framework development, an airport-level noise modeling method is developed to enable rapid exposure and impact analysis for system-level evaluation of advanced operational procedures. The modeling method and framework are demonstrated by evaluating potential benefits of specific advanced procedures at 35 major airports in the US National Airspace System, including Performance Based Navigation guidance and a speed-managed departure concept. 2018-07-03T11:41:33Z 2018-07-03T11:41:33Z 2018-07-03 http://hdl.handle.net/1721.1/116741 ;ICAT-2018-02 application/pdf |
spellingShingle | Jensen, Luke L. Hansman, R. John Data-Driven Flight Procedure Simulation and Noise Analysis in a Large-Scale Air Transportation System |
title | Data-Driven Flight Procedure Simulation and Noise Analysis in a Large-Scale Air Transportation System |
title_full | Data-Driven Flight Procedure Simulation and Noise Analysis in a Large-Scale Air Transportation System |
title_fullStr | Data-Driven Flight Procedure Simulation and Noise Analysis in a Large-Scale Air Transportation System |
title_full_unstemmed | Data-Driven Flight Procedure Simulation and Noise Analysis in a Large-Scale Air Transportation System |
title_short | Data-Driven Flight Procedure Simulation and Noise Analysis in a Large-Scale Air Transportation System |
title_sort | data driven flight procedure simulation and noise analysis in a large scale air transportation system |
url | http://hdl.handle.net/1721.1/116741 |
work_keys_str_mv | AT jensenlukel datadrivenflightproceduresimulationandnoiseanalysisinalargescaleairtransportationsystem AT hansmanrjohn datadrivenflightproceduresimulationandnoiseanalysisinalargescaleairtransportationsystem |