A Certified Trust Region Reduced Basis Approach to PDE-Constrained Optimization
Parameter optimization problems constrained by partial differential equations (PDEs) appear in many science and engineering applications. Solving these optimization problems may require a prohibitively large number of computationally expensive PDE solves, especially if the dimension of the design sp...
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Published: |
Society for Industrial & Applied Mathematics (SIAM)
2018
|
Online Access: | http://hdl.handle.net/1721.1/116912 https://orcid.org/0000-0001-6713-3746 https://orcid.org/0000-0003-2156-9338 |
Summary: | Parameter optimization problems constrained by partial differential equations (PDEs) appear in many science and engineering applications. Solving these optimization problems may require a prohibitively large number of computationally expensive PDE solves, especially if the dimension of the design space is large. It is therefore advantageous to replace expensive high-dimensional PDE solvers (e.g., finite element) with lower-dimensional surrogate models. In this paper, the reduced basis (RB) model reduction method is used in conjunction with a trust region optimization framework to accelerate PDE-constrained parameter optimization. Novel a posteriori error bounds on the RB cost and cost gradient for quadratic cost functionals (e.g., least squares) are presented and used to guarantee convergence to the optimum of the high-fidelity model. The proposed certified RB trust region approach uses high-fidelity solves to update the RB model only if the approximation is no longer sufficiently accurate, reducing the number of full-fidelity solves required. We consider problems governed by elliptic and parabolic PDEs and present numerical results for a thermal fin model problem in which we are able to reduce the number of full solves necessary for the optimization by up to 86%. Key words: model reduction, optimization, trust region methods, partial differential equations, reduced basis methods, error bounds, parametrized systems |
---|