Quantum Oscillation from In-Gap States and a Non-Hermitian Landau Level Problem

Motivated by recent experiments on Kondo insulators, we theoretically study quantum oscillations from disorder-induced in-gap states in small-gap insulators. By solving a non-Hermitian Landau level problem that incorporates the imaginary part of electron’s self-energy, we show that the oscillation p...

Full description

Bibliographic Details
Main Authors: Shen, Huitao, Fu, Liang
Other Authors: Massachusetts Institute of Technology. Department of Physics
Format: Article
Language:English
Published: American Physical Society 2018
Online Access:http://hdl.handle.net/1721.1/117115
https://orcid.org/0000-0003-1667-8011
https://orcid.org/0000-0002-8803-1017
Description
Summary:Motivated by recent experiments on Kondo insulators, we theoretically study quantum oscillations from disorder-induced in-gap states in small-gap insulators. By solving a non-Hermitian Landau level problem that incorporates the imaginary part of electron’s self-energy, we show that the oscillation period is determined by the Fermi surface area in the absence of the hybridization gap, and we derive an analytical formula for the oscillation amplitude as a function of the indirect band gap, scattering rates, and temperature. Over a wide parameter range, we find that the effective mass is controlled by scattering rates, while the Dingle factor is controlled by the indirect band gap. We also show the important effect of scattering rates in reshaping the quasiparticle dispersion in connection with angle-resolved photoemission measurements on heavy fermion materials.