Dislocations Accelerate Oxygen Ion Diffusion in La[subscript 0.8]Sr[subscript 0.2]MnO[subscript 3] Epitaxial Thin Films

Revealing whether dislocations accelerate oxygen ion transport is important for providing abilities in tuning the ionic conductivity of ceramic materials. In this study, we report how dislocations affect oxygen ion diffusion in Sr-doped LaMnO3(LSM), a model perovskite oxide that serves in energy con...

Full description

Bibliographic Details
Main Authors: Navickas, Edvinas, Lu, Qiyang, Wallisch, Wolfgang, Bernardi, Johannes, Stöger-Pollach, Michael, Friedbacher, Gernot, Hutter, Herbert, Fleig, Jürgen, Chen, Yan, Huber, Tobias, Yildiz, Bilge
Other Authors: Massachusetts Institute of Technology. Department of Materials Science and Engineering
Format: Article
Published: American Chemical Society (ACS) 2018
Online Access:http://hdl.handle.net/1721.1/117130
https://orcid.org/0000-0001-6063-023X
https://orcid.org/0000-0002-2688-5666
_version_ 1826201591722541056
author Navickas, Edvinas
Lu, Qiyang
Wallisch, Wolfgang
Bernardi, Johannes
Stöger-Pollach, Michael
Friedbacher, Gernot
Hutter, Herbert
Fleig, Jürgen
Chen, Yan
Huber, Tobias
Yildiz, Bilge
author2 Massachusetts Institute of Technology. Department of Materials Science and Engineering
author_facet Massachusetts Institute of Technology. Department of Materials Science and Engineering
Navickas, Edvinas
Lu, Qiyang
Wallisch, Wolfgang
Bernardi, Johannes
Stöger-Pollach, Michael
Friedbacher, Gernot
Hutter, Herbert
Fleig, Jürgen
Chen, Yan
Huber, Tobias
Yildiz, Bilge
author_sort Navickas, Edvinas
collection MIT
description Revealing whether dislocations accelerate oxygen ion transport is important for providing abilities in tuning the ionic conductivity of ceramic materials. In this study, we report how dislocations affect oxygen ion diffusion in Sr-doped LaMnO3(LSM), a model perovskite oxide that serves in energy conversion technologies. LSM epitaxial thin films with thicknesses ranging from 10 nm to more than 100 nm were prepared by pulsed laser deposition on single-crystal LaAlO3and SrTiO3substrates. The lattice mismatch between the film and substrates induces compressive or tensile in-plane strain in the LSM layers. This lattice strain is partially reduced by dislocations, especially in the LSM films on LaAlO3. Oxygen isotope exchange measured by secondary ion mass spectrometry revealed the existence of at least two very different diffusion coefficients in the LSM films on LaAlO3. The diffusion profiles can be quantitatively explained by the existence of fast oxygen ion diffusion along threading dislocations that is faster by up to 3 orders of magnitude compared to that in LSM bulk. Keywords: (La,Sr)MnO[subscript 3]; dislocation; epitaxial thin film; oxygen diffusion; oxygen surface exchange; strain; ToF-SIMS
first_indexed 2024-09-23T11:54:09Z
format Article
id mit-1721.1/117130
institution Massachusetts Institute of Technology
last_indexed 2024-09-23T11:54:09Z
publishDate 2018
publisher American Chemical Society (ACS)
record_format dspace
spelling mit-1721.1/1171302022-09-27T22:42:45Z Dislocations Accelerate Oxygen Ion Diffusion in La[subscript 0.8]Sr[subscript 0.2]MnO[subscript 3] Epitaxial Thin Films Navickas, Edvinas Lu, Qiyang Wallisch, Wolfgang Bernardi, Johannes Stöger-Pollach, Michael Friedbacher, Gernot Hutter, Herbert Fleig, Jürgen Chen, Yan Huber, Tobias Yildiz, Bilge Massachusetts Institute of Technology. Department of Materials Science and Engineering Massachusetts Institute of Technology. Department of Nuclear Science and Engineering Chen, Yan Huber, Tobias Yildiz, Bilge Revealing whether dislocations accelerate oxygen ion transport is important for providing abilities in tuning the ionic conductivity of ceramic materials. In this study, we report how dislocations affect oxygen ion diffusion in Sr-doped LaMnO3(LSM), a model perovskite oxide that serves in energy conversion technologies. LSM epitaxial thin films with thicknesses ranging from 10 nm to more than 100 nm were prepared by pulsed laser deposition on single-crystal LaAlO3and SrTiO3substrates. The lattice mismatch between the film and substrates induces compressive or tensile in-plane strain in the LSM layers. This lattice strain is partially reduced by dislocations, especially in the LSM films on LaAlO3. Oxygen isotope exchange measured by secondary ion mass spectrometry revealed the existence of at least two very different diffusion coefficients in the LSM films on LaAlO3. The diffusion profiles can be quantitatively explained by the existence of fast oxygen ion diffusion along threading dislocations that is faster by up to 3 orders of magnitude compared to that in LSM bulk. Keywords: (La,Sr)MnO[subscript 3]; dislocation; epitaxial thin film; oxygen diffusion; oxygen surface exchange; strain; ToF-SIMS United States. Department of Energy (Grant DE-SC0002633) 2018-07-26T13:41:38Z 2018-07-26T13:41:38Z 2017-10 2017-09 2018-07-23T13:15:10Z Article http://purl.org/eprint/type/JournalArticle 1936-0851 1936-086X http://hdl.handle.net/1721.1/117130 Navickas, Edvinas et al. “Dislocations Accelerate Oxygen Ion Diffusion in La[subscript 0.8]Sr[subscript 0.2]MnO[subscript 3] Epitaxial Thin Films.” ACS Nano 11, 11 (October 2017): 11475–11487 © 2017 American Chemical Society https://orcid.org/0000-0001-6063-023X https://orcid.org/0000-0002-2688-5666 http://dx.doi.org/10.1021/ACSNANO.7B06228 ACS Nano Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. application/pdf American Chemical Society (ACS) ACS
spellingShingle Navickas, Edvinas
Lu, Qiyang
Wallisch, Wolfgang
Bernardi, Johannes
Stöger-Pollach, Michael
Friedbacher, Gernot
Hutter, Herbert
Fleig, Jürgen
Chen, Yan
Huber, Tobias
Yildiz, Bilge
Dislocations Accelerate Oxygen Ion Diffusion in La[subscript 0.8]Sr[subscript 0.2]MnO[subscript 3] Epitaxial Thin Films
title Dislocations Accelerate Oxygen Ion Diffusion in La[subscript 0.8]Sr[subscript 0.2]MnO[subscript 3] Epitaxial Thin Films
title_full Dislocations Accelerate Oxygen Ion Diffusion in La[subscript 0.8]Sr[subscript 0.2]MnO[subscript 3] Epitaxial Thin Films
title_fullStr Dislocations Accelerate Oxygen Ion Diffusion in La[subscript 0.8]Sr[subscript 0.2]MnO[subscript 3] Epitaxial Thin Films
title_full_unstemmed Dislocations Accelerate Oxygen Ion Diffusion in La[subscript 0.8]Sr[subscript 0.2]MnO[subscript 3] Epitaxial Thin Films
title_short Dislocations Accelerate Oxygen Ion Diffusion in La[subscript 0.8]Sr[subscript 0.2]MnO[subscript 3] Epitaxial Thin Films
title_sort dislocations accelerate oxygen ion diffusion in la subscript 0 8 sr subscript 0 2 mno subscript 3 epitaxial thin films
url http://hdl.handle.net/1721.1/117130
https://orcid.org/0000-0001-6063-023X
https://orcid.org/0000-0002-2688-5666
work_keys_str_mv AT navickasedvinas dislocationsaccelerateoxygeniondiffusioninlasubscript08srsubscript02mnosubscript3epitaxialthinfilms
AT luqiyang dislocationsaccelerateoxygeniondiffusioninlasubscript08srsubscript02mnosubscript3epitaxialthinfilms
AT wallischwolfgang dislocationsaccelerateoxygeniondiffusioninlasubscript08srsubscript02mnosubscript3epitaxialthinfilms
AT bernardijohannes dislocationsaccelerateoxygeniondiffusioninlasubscript08srsubscript02mnosubscript3epitaxialthinfilms
AT stogerpollachmichael dislocationsaccelerateoxygeniondiffusioninlasubscript08srsubscript02mnosubscript3epitaxialthinfilms
AT friedbachergernot dislocationsaccelerateoxygeniondiffusioninlasubscript08srsubscript02mnosubscript3epitaxialthinfilms
AT hutterherbert dislocationsaccelerateoxygeniondiffusioninlasubscript08srsubscript02mnosubscript3epitaxialthinfilms
AT fleigjurgen dislocationsaccelerateoxygeniondiffusioninlasubscript08srsubscript02mnosubscript3epitaxialthinfilms
AT chenyan dislocationsaccelerateoxygeniondiffusioninlasubscript08srsubscript02mnosubscript3epitaxialthinfilms
AT hubertobias dislocationsaccelerateoxygeniondiffusioninlasubscript08srsubscript02mnosubscript3epitaxialthinfilms
AT yildizbilge dislocationsaccelerateoxygeniondiffusioninlasubscript08srsubscript02mnosubscript3epitaxialthinfilms