Optical and computational approaches for mapping brain activity and structure

Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.

Bibliographic Details
Main Author: Yoon, Young Gyu
Other Authors: Edward S. Boyden.
Format: Thesis
Language:eng
Published: Massachusetts Institute of Technology 2018
Subjects:
Online Access:http://hdl.handle.net/1721.1/118100
_version_ 1811079481644810240
author Yoon, Young Gyu
author2 Edward S. Boyden.
author_facet Edward S. Boyden.
Yoon, Young Gyu
author_sort Yoon, Young Gyu
collection MIT
description Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.
first_indexed 2024-09-23T11:15:43Z
format Thesis
id mit-1721.1/118100
institution Massachusetts Institute of Technology
language eng
last_indexed 2024-09-23T11:15:43Z
publishDate 2018
publisher Massachusetts Institute of Technology
record_format dspace
spelling mit-1721.1/1181002019-04-12T17:10:48Z Optical and computational approaches for mapping brain activity and structure Yoon, Young Gyu Edward S. Boyden. Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science. Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science. Electrical Engineering and Computer Science. Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018. Cataloged from PDF version of thesis. Includes bibliographical references (pages 181-189). Neuroscience always has been a heavily technology-starved field that has been often revolutionized with the rise of a new technology; and arguably the future advancement of neuroscience will also depend largely on the development of new technologies that allow acquiring new data sets that can provide deeper insights into the brain. While there is no universal agreement as to what data sets are needed to fully reveal the underlying principles of brain computation, neurons will certainly serve as an important layer to study the brain considering their discreteness and electrical characteristics. In other words, seeing a brain as a circuitry that is made of the neurons, it is important to study the relation between the brain's structure and its function at the neuronal level. Unfortunately, a brain is a huge network that consists of a huge number of neurons which makes it difficult to see the "big picture" while retaining the single neuron resolution. The aim of this study is to the develop such technologies that allow to see and analyze the large network's structure and dynamics with the single neuron resolution. The core strategy is to use optical microscopy to acquire the raw data and to infer the information of our interests with computational techniques with designing both optical and computational parts with each other in mind to maximize the synergy. The first part of the thesis describes the development and application of computational imaging techniques to monitor the brain activity in 3-D which allowed us to see how the neurons interact at an unprecedented speed. The second part describes a computational approach to extract a wiring diagram of a brain from an optical image of the brain rather than an electron microscopy image, as optical microscopy is undergoing rapid development and is likely to outperform electron microscopy in terms of scalability which will be an important criterion to map the whole brain. These will be the tools of great utility in neuroscience that can generate rich data sets that will be of wide interests to system neuroscientists as well as cellular/molecular neuroscientists. by Young Gyu Yoon. Ph. D. 2018-09-17T15:57:31Z 2018-09-17T15:57:31Z 2018 2018 Thesis http://hdl.handle.net/1721.1/118100 1052124209 eng MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582 189 pages application/pdf Massachusetts Institute of Technology
spellingShingle Electrical Engineering and Computer Science.
Yoon, Young Gyu
Optical and computational approaches for mapping brain activity and structure
title Optical and computational approaches for mapping brain activity and structure
title_full Optical and computational approaches for mapping brain activity and structure
title_fullStr Optical and computational approaches for mapping brain activity and structure
title_full_unstemmed Optical and computational approaches for mapping brain activity and structure
title_short Optical and computational approaches for mapping brain activity and structure
title_sort optical and computational approaches for mapping brain activity and structure
topic Electrical Engineering and Computer Science.
url http://hdl.handle.net/1721.1/118100
work_keys_str_mv AT yoonyounggyu opticalandcomputationalapproachesformappingbrainactivityandstructure