A Different Way of Doing Things
Cellular metabolism comprises an elaborate network of thousands of biochemical reactions that allow a cell to grow, divide, and respond to its environment. More than 100 years of research has identified some 3,000 enzymes and nutrient transporters, but only recently has it become clear that cancer c...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
Institute for Scientific Information
2018
|
Online Access: | http://hdl.handle.net/1721.1/118128 https://orcid.org/0000-0002-1446-7256 |
Summary: | Cellular metabolism comprises an elaborate network of thousands of biochemical reactions that allow a cell to grow, divide, and respond to its environment. More than 100 years of research has identified some 3,000 enzymes and nutrient transporters, but only recently has it become clear that cancer cells exploit these metabolic components to support their own proliferation and survival. Compared to nonproliferating normal cells, cancer cells have a number of different metabolic needs. Each time a cancer cell divides, it must replicate the components that make it up, including its DNA, organelles, and lipid membranes. The rapid proliferation of cancer cells requires an ample supply of building blocks for the production of these cellular components, and cancer cells have devised clever ways to ensure that this well does not run dry. Given that many cancer cells are dependent on such metabolic changes for survival, interest in targeting these pathways for treating tumors has surged in the last decade. Although only a few therapies have reached the market so far, basic research over the last 10 years has revealed many promising new targets, some of which have entered human testing, and there is already precedent for this approach in the clinic. |
---|