Superdensity operators for spacetime quantum mechanics
We introduce superdensity operators as a tool for analyzing quantum information in spacetime. Superdensity operators encode spacetime correlation functions in an operator framework, and support a natural generalization of Hilbert space techniques and Dirac’s transformation theory as traditionally ap...
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
Springer Berlin Heidelberg
2018
|
Online Access: | http://hdl.handle.net/1721.1/118146 https://orcid.org/0000-0002-6489-6155 |
Summary: | We introduce superdensity operators as a tool for analyzing quantum information in spacetime. Superdensity operators encode spacetime correlation functions in an operator framework, and support a natural generalization of Hilbert space techniques and Dirac’s transformation theory as traditionally applied to standard density operators. Superdensity operators can be measured experimentally, but accessing their full content requires novel procedures. We demonstrate these statements on several examples. The superdensity formalism suggests useful definitions of spacetime entropies and spacetime quantum channels. For example, we show that the von Neumann entropy of a super-density operator is related to a quantum generalization of the Kolmogorov-Sinai entropy, and compute this for a many-body system. We also suggest experimental protocols for measuring spacetime entropies. Keywords: Space-Time Symmetries; Lattice Quantum Field Theory |
---|