Shortwave infrared imaging and its translation to clinically-relevant designs

Thesis: Ph. D. in Physical Chemistry, Massachusetts Institute of Technology, Department of Chemistry, 2018.

Bibliographic Details
Main Author: Carr, Jessica Ann
Other Authors: Moungi G. Bawendi.
Format: Thesis
Language:eng
Published: Massachusetts Institute of Technology 2018
Subjects:
Online Access:http://hdl.handle.net/1721.1/118196
_version_ 1826193771397644288
author Carr, Jessica Ann
author2 Moungi G. Bawendi.
author_facet Moungi G. Bawendi.
Carr, Jessica Ann
author_sort Carr, Jessica Ann
collection MIT
description Thesis: Ph. D. in Physical Chemistry, Massachusetts Institute of Technology, Department of Chemistry, 2018.
first_indexed 2024-09-23T09:44:38Z
format Thesis
id mit-1721.1/118196
institution Massachusetts Institute of Technology
language eng
last_indexed 2024-09-23T09:44:38Z
publishDate 2018
publisher Massachusetts Institute of Technology
record_format dspace
spelling mit-1721.1/1181962019-04-12T17:04:27Z Shortwave infrared imaging and its translation to clinically-relevant designs Carr, Jessica Ann Moungi G. Bawendi. Massachusetts Institute of Technology. Department of Chemistry. Massachusetts Institute of Technology. Department of Chemistry. Chemistry. Thesis: Ph. D. in Physical Chemistry, Massachusetts Institute of Technology, Department of Chemistry, 2018. This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. Cataloged from student-submitted PDF version of thesis. Page 144 blank. Includes bibliographical references (pages 127-143). Visualizing structures deep within biological tissue is a central challenge in biomedical imaging, with both preclinical implications and clinical relevance. Using shortwave infrared (SWIR) light enables imaging with high resolution, high sensitivity, and sufficient penetration depth to noninvasively interrogate sub-surface tissue features. However, the clinical potential of this approach has been largely unexplored. Until recently, suitable detectors have been either unavailable or cost-prohibitive. Additionally, clinical adoption of SWIR imaging has been inhibited by a poor understanding of its advantages over conventional techniques. For fluorescence imaging in particular, there has further been a perceived need for clinically-approved contrast agents. Here, taking advantage of newly available detector technology, we investigate a variety of biomedical applications with SWIR-based imaging devices. We describe the development of a medical otoscope and our clinical observations using this device to evaluate middle ear pathologies in both adult and pediatric populations, showing that SWIR otoscopy could provide diagnostic information complementary to that provided by conventional visible otoscopy. We further describe fluorescence detection of an endogenous disease biomarker in animal models including nonalcoholic fatty liver disease and cirrhotic liver models and models of a neurodegenerative disease pathway. While this biomarker has been known for decades, we describe a method for its noninvasive detection in living animals using near infrared and SWIR light, as opposed to its conventional ex vivo detection. Furthermore, we show that SWIR image contrast and penetration depth are primarily mediated by the absorptivity of tissue, and can be tuned through deliberate selection of imaging wavelength. This understanding is crucial for rationally determining the optimal imaging window for a given application, and is a prerequisite for understanding which clinical applications could benefit from SWIR imaging. Finally, we show that commercially-available near infrared dyes, including the FDA-approved contrast agent indocyanine green, exhibit optical properties suitable for in vivo SWIR fluorescence imaging, including intravital microscopy, noninvasive, real-time imaging in blood and lymph vessels, and tumor-targeted imaging with IRDye 800CW, a dye being tested in clinical trials. Thus, we suggest that there is significant potential for SWIR imaging to be implemented alongside existing imaging modalities in the clinic. by Jessica Ann Carr. Ph. D. in Physical Chemistry 2018-09-28T20:24:58Z 2018-09-28T20:24:58Z 2018 2018 Thesis http://hdl.handle.net/1721.1/118196 1052565951 eng MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582 144 pages application/pdf Massachusetts Institute of Technology
spellingShingle Chemistry.
Carr, Jessica Ann
Shortwave infrared imaging and its translation to clinically-relevant designs
title Shortwave infrared imaging and its translation to clinically-relevant designs
title_full Shortwave infrared imaging and its translation to clinically-relevant designs
title_fullStr Shortwave infrared imaging and its translation to clinically-relevant designs
title_full_unstemmed Shortwave infrared imaging and its translation to clinically-relevant designs
title_short Shortwave infrared imaging and its translation to clinically-relevant designs
title_sort shortwave infrared imaging and its translation to clinically relevant designs
topic Chemistry.
url http://hdl.handle.net/1721.1/118196
work_keys_str_mv AT carrjessicaann shortwaveinfraredimaginganditstranslationtoclinicallyrelevantdesigns