Optogenetic Tractography for anatomo-functional characterization of cortico-subcortical neural circuits in non-human primates
Dissecting neural circuitry in non-human primates (NHP) is crucial to identify potential neuromodulation anatomical targets for the treatment of pharmacoresistant neuropsychiatric diseases by electrical neuromodulation. How targets of deep brain stimulation (DBS) and cortical targets of transcranial...
Main Authors: | , , , , , , , , , , , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Published: |
Springer Nature
2018
|
Online Access: | http://hdl.handle.net/1721.1/118443 https://orcid.org/0000-0002-0419-3351 |
_version_ | 1826215659291279360 |
---|---|
author | Senova, S. Poupon, C. Dauguet, J. Stewart, H. J. Dugué, G. P. Jan, C. Hosomi, K. Ralph, G. S. Barnes, L. Drouot, X. Pouzat, C. Mangin, J. F. Pain, F. Doignon, I. Aron-Badin, R. Brouillet, E. Mitrophanous, K. A. Hantraye, P. Palfi, S. Boyden, Edward |
author2 | Massachusetts Institute of Technology. Media Laboratory |
author_facet | Massachusetts Institute of Technology. Media Laboratory Senova, S. Poupon, C. Dauguet, J. Stewart, H. J. Dugué, G. P. Jan, C. Hosomi, K. Ralph, G. S. Barnes, L. Drouot, X. Pouzat, C. Mangin, J. F. Pain, F. Doignon, I. Aron-Badin, R. Brouillet, E. Mitrophanous, K. A. Hantraye, P. Palfi, S. Boyden, Edward |
author_sort | Senova, S. |
collection | MIT |
description | Dissecting neural circuitry in non-human primates (NHP) is crucial to identify potential neuromodulation anatomical targets for the treatment of pharmacoresistant neuropsychiatric diseases by electrical neuromodulation. How targets of deep brain stimulation (DBS) and cortical targets of transcranial magnetic stimulation (TMS) compare and might complement one another is an important question. Combining optogenetics and tractography may enable anatomo-functional characterization of large brain cortico-subcortical neural pathways. For the proof-of-concept this approach was used in the NHP brain to characterize the motor cortico-subthalamic pathway (m-CSP) which might be involved in DBS action mechanism in Parkinson's disease (PD). Rabies-G-pseudotyped and Rabies-G-VSVg-pseudotyped EIAV lentiviral vectors encoding the opsin ChR2 gene were stereotaxically injected into the subthalamic nucleus (STN) and were retrogradely transported to the layer of the motor cortex projecting to STN. A precise anatomical mapping of this pathway was then performed using histology-guided high angular resolution MRI tractography guiding accurately cortical photostimulation of m-CSP origins. Photoexcitation of m-CSP axon terminals or m-CSP cortical origins modified the spikes distribution for photosensitive STN neurons firing rate in non-equivalent ways. Optogenetic tractography might help design preclinical neuromodulation studies in NHP models of neuropsychiatric disease choosing the most appropriate target for the tested hypothesis. |
first_indexed | 2024-09-23T16:37:25Z |
format | Article |
id | mit-1721.1/118443 |
institution | Massachusetts Institute of Technology |
last_indexed | 2024-09-23T16:37:25Z |
publishDate | 2018 |
publisher | Springer Nature |
record_format | dspace |
spelling | mit-1721.1/1184432022-09-29T20:25:12Z Optogenetic Tractography for anatomo-functional characterization of cortico-subcortical neural circuits in non-human primates Senova, S. Poupon, C. Dauguet, J. Stewart, H. J. Dugué, G. P. Jan, C. Hosomi, K. Ralph, G. S. Barnes, L. Drouot, X. Pouzat, C. Mangin, J. F. Pain, F. Doignon, I. Aron-Badin, R. Brouillet, E. Mitrophanous, K. A. Hantraye, P. Palfi, S. Boyden, Edward Massachusetts Institute of Technology. Media Laboratory Program in Media Arts and Sciences (Massachusetts Institute of Technology) Boyden, Edward Dissecting neural circuitry in non-human primates (NHP) is crucial to identify potential neuromodulation anatomical targets for the treatment of pharmacoresistant neuropsychiatric diseases by electrical neuromodulation. How targets of deep brain stimulation (DBS) and cortical targets of transcranial magnetic stimulation (TMS) compare and might complement one another is an important question. Combining optogenetics and tractography may enable anatomo-functional characterization of large brain cortico-subcortical neural pathways. For the proof-of-concept this approach was used in the NHP brain to characterize the motor cortico-subthalamic pathway (m-CSP) which might be involved in DBS action mechanism in Parkinson's disease (PD). Rabies-G-pseudotyped and Rabies-G-VSVg-pseudotyped EIAV lentiviral vectors encoding the opsin ChR2 gene were stereotaxically injected into the subthalamic nucleus (STN) and were retrogradely transported to the layer of the motor cortex projecting to STN. A precise anatomical mapping of this pathway was then performed using histology-guided high angular resolution MRI tractography guiding accurately cortical photostimulation of m-CSP origins. Photoexcitation of m-CSP axon terminals or m-CSP cortical origins modified the spikes distribution for photosensitive STN neurons firing rate in non-equivalent ways. Optogenetic tractography might help design preclinical neuromodulation studies in NHP models of neuropsychiatric disease choosing the most appropriate target for the tested hypothesis. 2018-10-11T18:57:16Z 2018-10-11T18:57:16Z 2018-02 2017-06 2018-10-11T16:30:21Z Article http://purl.org/eprint/type/JournalArticle 2045-2322 http://hdl.handle.net/1721.1/118443 Senova, S., et al. “Optogenetic Tractography for Anatomo-Functional Characterization of Cortico-Subcortical Neural Circuits in Non-Human Primates.” Scientific Reports, vol. 8, no. 1, Dec. 2018. © 2018 The Authors https://orcid.org/0000-0002-0419-3351 http://dx.doi.org/10.1038/S41598-018-21486-8 Scientific Reports Creative Commons Attribution 4.0 International License http://creativecommons.org/licenses/by/4.0/ application/pdf Springer Nature Nature |
spellingShingle | Senova, S. Poupon, C. Dauguet, J. Stewart, H. J. Dugué, G. P. Jan, C. Hosomi, K. Ralph, G. S. Barnes, L. Drouot, X. Pouzat, C. Mangin, J. F. Pain, F. Doignon, I. Aron-Badin, R. Brouillet, E. Mitrophanous, K. A. Hantraye, P. Palfi, S. Boyden, Edward Optogenetic Tractography for anatomo-functional characterization of cortico-subcortical neural circuits in non-human primates |
title | Optogenetic Tractography for anatomo-functional characterization of cortico-subcortical neural circuits in non-human primates |
title_full | Optogenetic Tractography for anatomo-functional characterization of cortico-subcortical neural circuits in non-human primates |
title_fullStr | Optogenetic Tractography for anatomo-functional characterization of cortico-subcortical neural circuits in non-human primates |
title_full_unstemmed | Optogenetic Tractography for anatomo-functional characterization of cortico-subcortical neural circuits in non-human primates |
title_short | Optogenetic Tractography for anatomo-functional characterization of cortico-subcortical neural circuits in non-human primates |
title_sort | optogenetic tractography for anatomo functional characterization of cortico subcortical neural circuits in non human primates |
url | http://hdl.handle.net/1721.1/118443 https://orcid.org/0000-0002-0419-3351 |
work_keys_str_mv | AT senovas optogenetictractographyforanatomofunctionalcharacterizationofcorticosubcorticalneuralcircuitsinnonhumanprimates AT pouponc optogenetictractographyforanatomofunctionalcharacterizationofcorticosubcorticalneuralcircuitsinnonhumanprimates AT dauguetj optogenetictractographyforanatomofunctionalcharacterizationofcorticosubcorticalneuralcircuitsinnonhumanprimates AT stewarthj optogenetictractographyforanatomofunctionalcharacterizationofcorticosubcorticalneuralcircuitsinnonhumanprimates AT duguegp optogenetictractographyforanatomofunctionalcharacterizationofcorticosubcorticalneuralcircuitsinnonhumanprimates AT janc optogenetictractographyforanatomofunctionalcharacterizationofcorticosubcorticalneuralcircuitsinnonhumanprimates AT hosomik optogenetictractographyforanatomofunctionalcharacterizationofcorticosubcorticalneuralcircuitsinnonhumanprimates AT ralphgs optogenetictractographyforanatomofunctionalcharacterizationofcorticosubcorticalneuralcircuitsinnonhumanprimates AT barnesl optogenetictractographyforanatomofunctionalcharacterizationofcorticosubcorticalneuralcircuitsinnonhumanprimates AT drouotx optogenetictractographyforanatomofunctionalcharacterizationofcorticosubcorticalneuralcircuitsinnonhumanprimates AT pouzatc optogenetictractographyforanatomofunctionalcharacterizationofcorticosubcorticalneuralcircuitsinnonhumanprimates AT manginjf optogenetictractographyforanatomofunctionalcharacterizationofcorticosubcorticalneuralcircuitsinnonhumanprimates AT painf optogenetictractographyforanatomofunctionalcharacterizationofcorticosubcorticalneuralcircuitsinnonhumanprimates AT doignoni optogenetictractographyforanatomofunctionalcharacterizationofcorticosubcorticalneuralcircuitsinnonhumanprimates AT aronbadinr optogenetictractographyforanatomofunctionalcharacterizationofcorticosubcorticalneuralcircuitsinnonhumanprimates AT brouillete optogenetictractographyforanatomofunctionalcharacterizationofcorticosubcorticalneuralcircuitsinnonhumanprimates AT mitrophanouska optogenetictractographyforanatomofunctionalcharacterizationofcorticosubcorticalneuralcircuitsinnonhumanprimates AT hantrayep optogenetictractographyforanatomofunctionalcharacterizationofcorticosubcorticalneuralcircuitsinnonhumanprimates AT palfis optogenetictractographyforanatomofunctionalcharacterizationofcorticosubcorticalneuralcircuitsinnonhumanprimates AT boydenedward optogenetictractographyforanatomofunctionalcharacterizationofcorticosubcorticalneuralcircuitsinnonhumanprimates |