Constraining nucleation, condensation, and chemistry in oxidation flow reactors using size-distribution measurements and aerosol microphysical modeling
Oxidation flow reactors (OFRs) allow the concentration of a given atmospheric oxidant to be increased beyond ambient levels in order to study secondary organic aerosol (SOA) formation and aging over varying periods of equivalent aging by that oxidant. Previous studies have used these reactors to det...
Main Authors: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Published: |
Copernicus Publications
2018
|
Online Access: | http://hdl.handle.net/1721.1/118751 https://orcid.org/0000-0001-8097-9199 https://orcid.org/0000-0002-6275-521X |
_version_ | 1826208104559149056 |
---|---|
author | Hodshire, Anna L. Palm, Brett B. Alexander, M. Lizabeth Bian, Qijing Campuzano-Jost, Pedro Day, Douglas A. de Sá, Suzane S. Guenther, Alex B. Hansel, Armin Jud, Werner Karl, Thomas Kim, Saewung Park, Jeong-Hoo Peng, Zhe Seco, Roger Smith, James N. Pierce, Jeffrey R. Cross, Eben Hunter, James Freeman Kroll, Jesse Jimenez, Jose L. |
author2 | Massachusetts Institute of Technology. Department of Civil and Environmental Engineering |
author_facet | Massachusetts Institute of Technology. Department of Civil and Environmental Engineering Hodshire, Anna L. Palm, Brett B. Alexander, M. Lizabeth Bian, Qijing Campuzano-Jost, Pedro Day, Douglas A. de Sá, Suzane S. Guenther, Alex B. Hansel, Armin Jud, Werner Karl, Thomas Kim, Saewung Park, Jeong-Hoo Peng, Zhe Seco, Roger Smith, James N. Pierce, Jeffrey R. Cross, Eben Hunter, James Freeman Kroll, Jesse Jimenez, Jose L. |
author_sort | Hodshire, Anna L. |
collection | MIT |
description | Oxidation flow reactors (OFRs) allow the concentration of a given atmospheric oxidant to be increased beyond ambient levels in order to study secondary organic aerosol (SOA) formation and aging over varying periods of equivalent aging by that oxidant. Previous studies have used these reactors to determine the bulk OA mass and chemical evolution. To our knowledge, no OFR study has focused on the interpretation of the evolving aerosol size distributions. In this study, we use size-distribution measurements of the OFR and an aerosol microphysics model to learn about size-dependent processes in the OFR. Specifically, we use OFR exposures between 0.09 and 0.9 equivalent days of OH aging from the 2011 BEACHON-RoMBAS and GoAmazon2014/5 field campaigns. We use simulations in the TOMAS (TwO-Moment Aerosol Sectional) microphysics box model to constrain the following parameters in the OFR: (1) the rate constant of gas-phase functionalization reactions of organic compounds with OH, (2) the rate constant of gas-phase fragmentation reactions of organic compounds with OH, (3) the reactive uptake coefficient for heterogeneous fragmentation reactions with OH, (4) the nucleation rate constants for three different nucleation schemes, and (5) an effective accommodation coefficient that accounts for possible particle diffusion limitations of particles larger than 60nm in diameter. We find the best model-to-measurement agreement when the accommodation coefficient of the larger particles (Dp>60nm) was 0.1 or lower (with an accommodation coefficient of 1 for smaller particles), which suggests a diffusion limitation in the larger particles. When using these low accommodation-coefficient values, the model agrees with measurements when using a published H2SO4-organics nucleation mechanism and previously published values of rate constants for gas-phase oxidation reactions. Further, gas-phase fragmentation was found to have a significant impact upon the size distribution, and including fragmentation was necessary for accurately simulating the distributions in the OFR. The model was insensitive to the value of the reactive uptake coefficient on these aging timescales. Monoterpenes and isoprene could explain 24%-95% of the observed change in total volume of aerosol in the OFR, with ambient semivolatile and intermediate-volatility organic compounds (S/IVOCs) appearing to explain the remainder of the change in total volume. These results provide support to the mass-based findings of previous OFR studies, give insight to important size-distribution dynamics in the OFR, and enable the design of future OFR studies focused on new particle formation and/or microphysical processes. |
first_indexed | 2024-09-23T14:00:35Z |
format | Article |
id | mit-1721.1/118751 |
institution | Massachusetts Institute of Technology |
last_indexed | 2024-09-23T14:00:35Z |
publishDate | 2018 |
publisher | Copernicus Publications |
record_format | dspace |
spelling | mit-1721.1/1187512022-10-01T18:32:53Z Constraining nucleation, condensation, and chemistry in oxidation flow reactors using size-distribution measurements and aerosol microphysical modeling Hodshire, Anna L. Palm, Brett B. Alexander, M. Lizabeth Bian, Qijing Campuzano-Jost, Pedro Day, Douglas A. de Sá, Suzane S. Guenther, Alex B. Hansel, Armin Jud, Werner Karl, Thomas Kim, Saewung Park, Jeong-Hoo Peng, Zhe Seco, Roger Smith, James N. Pierce, Jeffrey R. Cross, Eben Hunter, James Freeman Kroll, Jesse Jimenez, Jose L. Massachusetts Institute of Technology. Department of Civil and Environmental Engineering Massachusetts Institute of Technology. Department of Materials Science and Engineering Massachusetts Institute of Technology. Department of Mechanical Engineering Cross, Eben Hunter, James Freeman Kroll, Jesse Jimenez, Jose L. Oxidation flow reactors (OFRs) allow the concentration of a given atmospheric oxidant to be increased beyond ambient levels in order to study secondary organic aerosol (SOA) formation and aging over varying periods of equivalent aging by that oxidant. Previous studies have used these reactors to determine the bulk OA mass and chemical evolution. To our knowledge, no OFR study has focused on the interpretation of the evolving aerosol size distributions. In this study, we use size-distribution measurements of the OFR and an aerosol microphysics model to learn about size-dependent processes in the OFR. Specifically, we use OFR exposures between 0.09 and 0.9 equivalent days of OH aging from the 2011 BEACHON-RoMBAS and GoAmazon2014/5 field campaigns. We use simulations in the TOMAS (TwO-Moment Aerosol Sectional) microphysics box model to constrain the following parameters in the OFR: (1) the rate constant of gas-phase functionalization reactions of organic compounds with OH, (2) the rate constant of gas-phase fragmentation reactions of organic compounds with OH, (3) the reactive uptake coefficient for heterogeneous fragmentation reactions with OH, (4) the nucleation rate constants for three different nucleation schemes, and (5) an effective accommodation coefficient that accounts for possible particle diffusion limitations of particles larger than 60nm in diameter. We find the best model-to-measurement agreement when the accommodation coefficient of the larger particles (Dp>60nm) was 0.1 or lower (with an accommodation coefficient of 1 for smaller particles), which suggests a diffusion limitation in the larger particles. When using these low accommodation-coefficient values, the model agrees with measurements when using a published H2SO4-organics nucleation mechanism and previously published values of rate constants for gas-phase oxidation reactions. Further, gas-phase fragmentation was found to have a significant impact upon the size distribution, and including fragmentation was necessary for accurately simulating the distributions in the OFR. The model was insensitive to the value of the reactive uptake coefficient on these aging timescales. Monoterpenes and isoprene could explain 24%-95% of the observed change in total volume of aerosol in the OFR, with ambient semivolatile and intermediate-volatility organic compounds (S/IVOCs) appearing to explain the remainder of the change in total volume. These results provide support to the mass-based findings of previous OFR studies, give insight to important size-distribution dynamics in the OFR, and enable the design of future OFR studies focused on new particle formation and/or microphysical processes. United States. Department of Energy. Office of Biological and Environmental Research (grant no. DE-SC0011780) United States. National Oceanic and Atmospheric Administration. Office of Atmospheric Chemistry, Carbon Cycle, and Climate Program (cooperative agreement award no. NA17OAR430001) United States. National Oceanic and Atmospheric Administration. Office of Atmospheric Chemistry, Carbon Cycle, and Climate Program (cooperative agreement award no. NA17OAR4310002) National Science Foundation (U.S.). Atmospheric Chemistry program (grant no. AGS-1559607) National Science Foundation (U.S.). Atmospheric Chemistry program (grant no. AGS-1558966) Fundação de Amparo à Pesquisa do Estado do Amazonas Fundação de Amparo à Pesquisa do Estado de São Paulo Brazil Scientific Mobility Program United States. National Oceanic and Atmospheric Administration (grant NA10OAR4310106 (MIT)) National Science Foundation (U.S.) Austrian Science Fund (project no. L518-N20) 2018-10-23T14:16:54Z 2018-10-23T14:16:54Z 2018-08 2018-10-22T15:48:13Z Article http://purl.org/eprint/type/JournalArticle 1680-7324 http://hdl.handle.net/1721.1/118751 Hodshire, Anna L., Brett B. Palm, M. Lizabeth Alexander, Qijing Bian, Pedro Campuzano-Jost, Eben S. Cross, Douglas A. Day, et al. “Constraining Nucleation, Condensation, and Chemistry in Oxidation Flow Reactors Using Size-Distribution Measurements and Aerosol Microphysical Modeling.” Atmospheric Chemistry and Physics 18, no. 16 (August 28, 2018): 12433–12460. https://orcid.org/0000-0001-8097-9199 https://orcid.org/0000-0002-6275-521X http://dx.doi.org/10.5194/acp-18-12433-2018 Atmospheric Chemistry and Physics Creative Commons Attribution 4.0 International License http://creativecommons.org/licenses/by/4.0/ application/pdf Copernicus Publications Copernicus Publications |
spellingShingle | Hodshire, Anna L. Palm, Brett B. Alexander, M. Lizabeth Bian, Qijing Campuzano-Jost, Pedro Day, Douglas A. de Sá, Suzane S. Guenther, Alex B. Hansel, Armin Jud, Werner Karl, Thomas Kim, Saewung Park, Jeong-Hoo Peng, Zhe Seco, Roger Smith, James N. Pierce, Jeffrey R. Cross, Eben Hunter, James Freeman Kroll, Jesse Jimenez, Jose L. Constraining nucleation, condensation, and chemistry in oxidation flow reactors using size-distribution measurements and aerosol microphysical modeling |
title | Constraining nucleation, condensation, and chemistry in oxidation flow reactors using size-distribution measurements and aerosol microphysical modeling |
title_full | Constraining nucleation, condensation, and chemistry in oxidation flow reactors using size-distribution measurements and aerosol microphysical modeling |
title_fullStr | Constraining nucleation, condensation, and chemistry in oxidation flow reactors using size-distribution measurements and aerosol microphysical modeling |
title_full_unstemmed | Constraining nucleation, condensation, and chemistry in oxidation flow reactors using size-distribution measurements and aerosol microphysical modeling |
title_short | Constraining nucleation, condensation, and chemistry in oxidation flow reactors using size-distribution measurements and aerosol microphysical modeling |
title_sort | constraining nucleation condensation and chemistry in oxidation flow reactors using size distribution measurements and aerosol microphysical modeling |
url | http://hdl.handle.net/1721.1/118751 https://orcid.org/0000-0001-8097-9199 https://orcid.org/0000-0002-6275-521X |
work_keys_str_mv | AT hodshireannal constrainingnucleationcondensationandchemistryinoxidationflowreactorsusingsizedistributionmeasurementsandaerosolmicrophysicalmodeling AT palmbrettb constrainingnucleationcondensationandchemistryinoxidationflowreactorsusingsizedistributionmeasurementsandaerosolmicrophysicalmodeling AT alexandermlizabeth constrainingnucleationcondensationandchemistryinoxidationflowreactorsusingsizedistributionmeasurementsandaerosolmicrophysicalmodeling AT bianqijing constrainingnucleationcondensationandchemistryinoxidationflowreactorsusingsizedistributionmeasurementsandaerosolmicrophysicalmodeling AT campuzanojostpedro constrainingnucleationcondensationandchemistryinoxidationflowreactorsusingsizedistributionmeasurementsandaerosolmicrophysicalmodeling AT daydouglasa constrainingnucleationcondensationandchemistryinoxidationflowreactorsusingsizedistributionmeasurementsandaerosolmicrophysicalmodeling AT desasuzanes constrainingnucleationcondensationandchemistryinoxidationflowreactorsusingsizedistributionmeasurementsandaerosolmicrophysicalmodeling AT guentheralexb constrainingnucleationcondensationandchemistryinoxidationflowreactorsusingsizedistributionmeasurementsandaerosolmicrophysicalmodeling AT hanselarmin constrainingnucleationcondensationandchemistryinoxidationflowreactorsusingsizedistributionmeasurementsandaerosolmicrophysicalmodeling AT judwerner constrainingnucleationcondensationandchemistryinoxidationflowreactorsusingsizedistributionmeasurementsandaerosolmicrophysicalmodeling AT karlthomas constrainingnucleationcondensationandchemistryinoxidationflowreactorsusingsizedistributionmeasurementsandaerosolmicrophysicalmodeling AT kimsaewung constrainingnucleationcondensationandchemistryinoxidationflowreactorsusingsizedistributionmeasurementsandaerosolmicrophysicalmodeling AT parkjeonghoo constrainingnucleationcondensationandchemistryinoxidationflowreactorsusingsizedistributionmeasurementsandaerosolmicrophysicalmodeling AT pengzhe constrainingnucleationcondensationandchemistryinoxidationflowreactorsusingsizedistributionmeasurementsandaerosolmicrophysicalmodeling AT secoroger constrainingnucleationcondensationandchemistryinoxidationflowreactorsusingsizedistributionmeasurementsandaerosolmicrophysicalmodeling AT smithjamesn constrainingnucleationcondensationandchemistryinoxidationflowreactorsusingsizedistributionmeasurementsandaerosolmicrophysicalmodeling AT piercejeffreyr constrainingnucleationcondensationandchemistryinoxidationflowreactorsusingsizedistributionmeasurementsandaerosolmicrophysicalmodeling AT crosseben constrainingnucleationcondensationandchemistryinoxidationflowreactorsusingsizedistributionmeasurementsandaerosolmicrophysicalmodeling AT hunterjamesfreeman constrainingnucleationcondensationandchemistryinoxidationflowreactorsusingsizedistributionmeasurementsandaerosolmicrophysicalmodeling AT krolljesse constrainingnucleationcondensationandchemistryinoxidationflowreactorsusingsizedistributionmeasurementsandaerosolmicrophysicalmodeling AT jimenezjosel constrainingnucleationcondensationandchemistryinoxidationflowreactorsusingsizedistributionmeasurementsandaerosolmicrophysicalmodeling |