Dynamic Analysis of a Buckling-Type Amplification Mechanism to Maximize the Power Output by Varying the Load Impedance and Control Timing
Due to the limited displacement of piezoelectric stack actuators, common practice is to use some form of displacement amplification mechanism. This paper focuses on an externally leveraged mechanism that utilized a buckling motion to achieve large amplification ratios within a single stage. This mec...
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Published: |
ASME International
2018
|
Online Access: | http://hdl.handle.net/1721.1/118803 https://orcid.org/0000-0001-5393-7559 https://orcid.org/0000-0003-3155-6223 |
_version_ | 1826213861871583232 |
---|---|
author | Torres, James Asada, H. Harry Asada, Haruhiko |
author2 | Massachusetts Institute of Technology. Department of Mechanical Engineering |
author_facet | Massachusetts Institute of Technology. Department of Mechanical Engineering Torres, James Asada, H. Harry Asada, Haruhiko |
author_sort | Torres, James |
collection | MIT |
description | Due to the limited displacement of piezoelectric stack actuators, common practice is to use some form of displacement amplification mechanism. This paper focuses on an externally leveraged mechanism that utilized a buckling motion to achieve large amplification ratios within a single stage. This mechanism interfaces with a sinusoidal gear track that acts as the load. The dynamics of the system are derived and are shown to be fifth order. Due to the significantly nonlinear amplification caused by the buckling phenomenon and the gear, the dynamics are run in simulation to gain insight into the performance of the actuator. There is shown to be an optimal speed at which to run the actuator to maximize the possible power output. Furthermore, due to the simple binary control significant benefits are achieved by varying the control timing based on the velocity to ensure the force and velocity of the output are in phase. Copyright © 2012 by ASME. |
first_indexed | 2024-09-23T15:56:01Z |
format | Article |
id | mit-1721.1/118803 |
institution | Massachusetts Institute of Technology |
last_indexed | 2024-09-23T15:56:01Z |
publishDate | 2018 |
publisher | ASME International |
record_format | dspace |
spelling | mit-1721.1/1188032022-10-02T05:09:38Z Dynamic Analysis of a Buckling-Type Amplification Mechanism to Maximize the Power Output by Varying the Load Impedance and Control Timing Torres, James Asada, H. Harry Asada, Haruhiko Massachusetts Institute of Technology. Department of Mechanical Engineering Torres, James Asada, Haruhiko Due to the limited displacement of piezoelectric stack actuators, common practice is to use some form of displacement amplification mechanism. This paper focuses on an externally leveraged mechanism that utilized a buckling motion to achieve large amplification ratios within a single stage. This mechanism interfaces with a sinusoidal gear track that acts as the load. The dynamics of the system are derived and are shown to be fifth order. Due to the significantly nonlinear amplification caused by the buckling phenomenon and the gear, the dynamics are run in simulation to gain insight into the performance of the actuator. There is shown to be an optimal speed at which to run the actuator to maximize the possible power output. Furthermore, due to the simple binary control significant benefits are achieved by varying the control timing based on the velocity to ensure the force and velocity of the output are in phase. Copyright © 2012 by ASME. 2018-10-30T15:11:07Z 2018-10-30T15:11:07Z 2012-10 2018-10-23T18:09:31Z Article http://purl.org/eprint/type/ConferencePaper 978-0-7918-4530-1 http://hdl.handle.net/1721.1/118803 Torres, James, and H. Harry Asada. “Dynamic Analysis of a Buckling-Type Amplification Mechanism to Maximize the Power Output by Varying the Load Impedance and Control Timing.” Volume 2: Legged Locomotion; Mechatronic Systems; Mechatronics; Mechatronics for Aquatic Environments; MEMS Control; Model Predictive Control; Modeling and Model-Based Control of Advanced IC Engines, 17-19 October, 2012, Fort Lauderdale, Florida, ASME, 2012, p. 123. © 2012 by ASME https://orcid.org/0000-0001-5393-7559 https://orcid.org/0000-0003-3155-6223 http://dx.doi.org/10.1115/DSCC2012-MOVIC2012-8813 Volume 2: Legged Locomotion; Mechatronic Systems; Mechatronics; Mechatronics for Aquatic Environments; MEMS Control; Model Predictive Control; Modeling and Model-Based Control of Advanced IC Engines; Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. application/pdf ASME International ASME |
spellingShingle | Torres, James Asada, H. Harry Asada, Haruhiko Dynamic Analysis of a Buckling-Type Amplification Mechanism to Maximize the Power Output by Varying the Load Impedance and Control Timing |
title | Dynamic Analysis of a Buckling-Type Amplification Mechanism to Maximize the Power Output by Varying the Load Impedance and Control Timing |
title_full | Dynamic Analysis of a Buckling-Type Amplification Mechanism to Maximize the Power Output by Varying the Load Impedance and Control Timing |
title_fullStr | Dynamic Analysis of a Buckling-Type Amplification Mechanism to Maximize the Power Output by Varying the Load Impedance and Control Timing |
title_full_unstemmed | Dynamic Analysis of a Buckling-Type Amplification Mechanism to Maximize the Power Output by Varying the Load Impedance and Control Timing |
title_short | Dynamic Analysis of a Buckling-Type Amplification Mechanism to Maximize the Power Output by Varying the Load Impedance and Control Timing |
title_sort | dynamic analysis of a buckling type amplification mechanism to maximize the power output by varying the load impedance and control timing |
url | http://hdl.handle.net/1721.1/118803 https://orcid.org/0000-0001-5393-7559 https://orcid.org/0000-0003-3155-6223 |
work_keys_str_mv | AT torresjames dynamicanalysisofabucklingtypeamplificationmechanismtomaximizethepoweroutputbyvaryingtheloadimpedanceandcontroltiming AT asadahharry dynamicanalysisofabucklingtypeamplificationmechanismtomaximizethepoweroutputbyvaryingtheloadimpedanceandcontroltiming AT asadaharuhiko dynamicanalysisofabucklingtypeamplificationmechanismtomaximizethepoweroutputbyvaryingtheloadimpedanceandcontroltiming |