Design of a Piezoelectric Poly-Actuated Linear Motor

Design and analysis for an efficient and force dense piezoelectric poly-actuated linear motor is presented. A linear motor is constructed with multiple piezoelectric actuator units engaging a rod having gear teeth. The multiple piezo-units are placed along the geared rod with a particular phase diff...

Full description

Bibliographic Details
Main Authors: Tsukahara, Shinichiro, Penalver-Aguila, Lluis Enric, Torres, James, Asada, Haruhiko
Other Authors: Massachusetts Institute of Technology. Department of Mechanical Engineering
Format: Article
Published: ASME International 2018
Online Access:http://hdl.handle.net/1721.1/118807
https://orcid.org/0000-0001-5393-7559
https://orcid.org/0000-0003-3155-6223
Description
Summary:Design and analysis for an efficient and force dense piezoelectric poly-actuated linear motor is presented. A linear motor is constructed with multiple piezoelectric actuator units engaging a rod having gear teeth. The multiple piezo-units are placed along the geared rod with a particular phase difference such that a near constant force is generated regardless of the rod position by coordinating the multiple piezo-units. Rolling contact buckling mechanisms within the piezo-units provide large displacement amplification with high energy transmission and low loss properties from the piezo-units to the geared rod. This piezo-based motor has capacitive actuator characteristics which allow it to bear static loads efficiently. Furthermore, the poly-actuator architecture presented provides for scalability through modular design. First, the basic design principle describing the engagement of buckling amplification mechanisms to a phased array-shaped gear rod is presented, and the resulting force and displacement characteristics are analyzed. Design methods for creating a piezoelectric poly-actuated linear motor are then summarized. A prototype design is presented for which a maximum mean force of 213 N, a maximum velocity of 1.125 m/s, and a force density of 41 N/kg is calculated. Copyright © 2013 by ASME.