Discovery of ZrCoBi based half Heuslers with high thermoelectric conversion efficiency
Thermoelectric materials are capable of converting waste heat into electricity. The dimensionless figure-of-merit (ZT), as the critical measure for the material's thermoelectric performance, plays a decisive role in the energy conversion efficiency. Half-Heusler materials, as one of the most pr...
Main Authors: | , , , , , , , , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Published: |
Nature Publishing Group
2018
|
Online Access: | http://hdl.handle.net/1721.1/118903 https://orcid.org/0000-0002-3968-8530 |
Summary: | Thermoelectric materials are capable of converting waste heat into electricity. The dimensionless figure-of-merit (ZT), as the critical measure for the material's thermoelectric performance, plays a decisive role in the energy conversion efficiency. Half-Heusler materials, as one of the most promising candidates for thermoelectric power generation, have relatively low ZTs compared to other material systems. Here we report the discovery of p-type ZrCoBi-based half-Heuslers with a record-high ZT of ∼1.42 at 973 K and a high thermoelectric conversion efficiency of ∼9% at the temperature difference of ∼500 K. Such an outstanding thermoelectric performance originates from its unique band structure offering a high band degeneracy (Nv) of 10 in conjunction with a low thermal conductivity benefiting from the low mean sound velocity (vm∼2800 m s-1). Our work demonstrates that ZrCoBi-based half-Heuslers are promising candidates for high-temperature thermoelectric power generation. |
---|