An operational definition of quark and gluon jets

While “quark” and “gluon” jets are often treated as separate, well-defined objects in both theoretical and experimental contexts, no precise, practical, and hadron-level definition of jet flavor presently exists. To remedy this issue, we develop and advocate for a data-driven, operational definition...

Full description

Bibliographic Details
Main Authors: Komiske, Patrick T., Metodiev, Eric Mario, Thaler, Jesse
Other Authors: Massachusetts Institute of Technology. Center for Theoretical Physics
Format: Article
Language:English
Published: Springer Nature 2018
Online Access:http://hdl.handle.net/1721.1/118991
https://orcid.org/0000-0002-2406-8160
Description
Summary:While “quark” and “gluon” jets are often treated as separate, well-defined objects in both theoretical and experimental contexts, no precise, practical, and hadron-level definition of jet flavor presently exists. To remedy this issue, we develop and advocate for a data-driven, operational definition of quark and gluon jets that is readily applicable at colliders. Rather than specifying a per-jet flavor label, we aggregately define quark and gluon jets at the distribution level in terms of measured hadronic cross sections. Intuitively, quark and gluon jets emerge as the two maximally separable categories within two jet samples in data. Benefiting from recent work on data-driven classifiers and topic modeling for jets, we show that the practical tools needed to implement our definition already exist for experimental applications. As an informative example, we demonstrate the power of our operational definition using Z+jet and dijet samples, illustrating that pure quark and gluon distributions and fractions can be successfully extracted in a fully well-defined manner. Keyword: Jets