Optical loss analysis of monolithic perovskite/Si tandem solar cell
Coupling perovskite and silicon solar cells in a tandem configuration is considered an attractive method to increase conversion efficiency beyond the single-junction Shockley-Queisser limit. While a mechanically-stacked perovskite/silicon tandem solar cell has been demonstrated, a method to electric...
Main Authors: | , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Published: |
Institute of Electrical and Electronics Engineers (IEEE)
2018
|
Online Access: | http://hdl.handle.net/1721.1/119162 https://orcid.org/0000-0003-2239-6192 https://orcid.org/0000-0001-7471-7133 https://orcid.org/0000-0001-8345-4937 |
Summary: | Coupling perovskite and silicon solar cells in a tandem configuration is considered an attractive method to increase conversion efficiency beyond the single-junction Shockley-Queisser limit. While a mechanically-stacked perovskite/silicon tandem solar cell has been demonstrated, a method to electrically couple perovskite and silicon solar cell in a monolithic configuration has not been demonstrated. In this contribution, we design and demonstrate a working monolithic perovskite/silicon tandem solar cell, enabled by a silicon tunnel junction, with a VOC of 1.58 V. We further discuss possible efficiency loss mechanisms and mitigation strategies. |
---|