Nonparametric identification in panels using quantiles

This paper considers identification and estimation of ceteris paribus effects of continuous regressors in nonseparable panel models with time homogeneity. The effects of interest are derivatives of the average and quantile structural functions of the model. We find that these derivatives are identif...

Volledige beschrijving

Bibliografische gegevens
Hoofdauteurs: Fernández-Val, Iván, Hoderlein, Stefan, Holzmann, Hajo, Chernozhukov, Victor V, Newey, Whitney K
Andere auteurs: Massachusetts Institute of Technology. Department of Economics
Formaat: Artikel
Gepubliceerd in: Elsevier BV 2018
Online toegang:http://hdl.handle.net/1721.1/119462
https://orcid.org/0000-0002-3250-6714
https://orcid.org/0000-0003-2699-4704
_version_ 1826198420005584896
author Fernández-Val, Iván
Hoderlein, Stefan
Holzmann, Hajo
Chernozhukov, Victor V
Newey, Whitney K
author2 Massachusetts Institute of Technology. Department of Economics
author_facet Massachusetts Institute of Technology. Department of Economics
Fernández-Val, Iván
Hoderlein, Stefan
Holzmann, Hajo
Chernozhukov, Victor V
Newey, Whitney K
author_sort Fernández-Val, Iván
collection MIT
description This paper considers identification and estimation of ceteris paribus effects of continuous regressors in nonseparable panel models with time homogeneity. The effects of interest are derivatives of the average and quantile structural functions of the model. We find that these derivatives are identified with two time periods for "stayers", i.e. for individuals with the same regressor values in two time periods. We show that the identification results carry over to models that allow location and scale time effects. We propose nonparametric series methods and a weighted bootstrap scheme to estimate and make inference on the identified effects. The bootstrap proposed allows inference for function-valued parameters such as quantile effects uniformly over a region of quantile indices and/or regressor values. An empirical application to Engel curve estimation with panel data illustrates the results. Keywords: Panel data, nonseparable model, average effect, quantile effect, Engel curve
first_indexed 2024-09-23T11:04:36Z
format Article
id mit-1721.1/119462
institution Massachusetts Institute of Technology
last_indexed 2024-09-23T11:04:36Z
publishDate 2018
publisher Elsevier BV
record_format dspace
spelling mit-1721.1/1194622022-10-01T01:01:06Z Nonparametric identification in panels using quantiles Fernández-Val, Iván Hoderlein, Stefan Holzmann, Hajo Chernozhukov, Victor V Newey, Whitney K Massachusetts Institute of Technology. Department of Economics Chernozhukov, Victor V Newey, Whitney K This paper considers identification and estimation of ceteris paribus effects of continuous regressors in nonseparable panel models with time homogeneity. The effects of interest are derivatives of the average and quantile structural functions of the model. We find that these derivatives are identified with two time periods for "stayers", i.e. for individuals with the same regressor values in two time periods. We show that the identification results carry over to models that allow location and scale time effects. We propose nonparametric series methods and a weighted bootstrap scheme to estimate and make inference on the identified effects. The bootstrap proposed allows inference for function-valued parameters such as quantile effects uniformly over a region of quantile indices and/or regressor values. An empirical application to Engel curve estimation with panel data illustrates the results. Keywords: Panel data, nonseparable model, average effect, quantile effect, Engel curve National Science Foundation (U.S.) 2018-12-07T15:39:57Z 2018-12-07T15:39:57Z 2015-10 2018-12-04T13:45:13Z Article http://purl.org/eprint/type/JournalArticle 0304-4076 http://hdl.handle.net/1721.1/119462 Chernozhukov, Victor, Iván Fernández-Val, Stefan Hoderlein, Hajo Holzmann, and Whitney Newey. “Nonparametric Identification in Panels Using Quantiles.” Journal of Econometrics 188, no. 2 (October 2015): 378–392. https://orcid.org/0000-0002-3250-6714 https://orcid.org/0000-0003-2699-4704 http://dx.doi.org/10.1016/J.JECONOM.2015.03.006 Journal of Econometrics Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/ application/pdf Elsevier BV arXiv
spellingShingle Fernández-Val, Iván
Hoderlein, Stefan
Holzmann, Hajo
Chernozhukov, Victor V
Newey, Whitney K
Nonparametric identification in panels using quantiles
title Nonparametric identification in panels using quantiles
title_full Nonparametric identification in panels using quantiles
title_fullStr Nonparametric identification in panels using quantiles
title_full_unstemmed Nonparametric identification in panels using quantiles
title_short Nonparametric identification in panels using quantiles
title_sort nonparametric identification in panels using quantiles
url http://hdl.handle.net/1721.1/119462
https://orcid.org/0000-0002-3250-6714
https://orcid.org/0000-0003-2699-4704
work_keys_str_mv AT fernandezvalivan nonparametricidentificationinpanelsusingquantiles
AT hoderleinstefan nonparametricidentificationinpanelsusingquantiles
AT holzmannhajo nonparametricidentificationinpanelsusingquantiles
AT chernozhukovvictorv nonparametricidentificationinpanelsusingquantiles
AT neweywhitneyk nonparametricidentificationinpanelsusingquantiles