Exceptional Electrocatalytic Oxygen Evolution via Tunable Charge Transfer Interactions in La[subscript 0.5]Sr[subscript 1.5]Ni[subscript 1−x]FexO[subscript 4±δ] Ruddlesden-Popper Oxides
The electrolysis of water is of global importance to store renewable energy and the methodical design of next-generation oxygen evolution catalysts requires a greater understanding of the structural and electronic contributions that give rise to increased activities. Herein, we report a series of Ru...
Main Authors: | , , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Published: |
Nature Publishing Group
2018
|
Online Access: | http://hdl.handle.net/1721.1/119813 https://orcid.org/0000-0002-9286-1216 https://orcid.org/0000-0002-4347-0139 |
Summary: | The electrolysis of water is of global importance to store renewable energy and the methodical design of next-generation oxygen evolution catalysts requires a greater understanding of the structural and electronic contributions that give rise to increased activities. Herein, we report a series of Ruddlesden–Popper La[subscript 0.5]Sr[subscript 1.5]Ni[subscript 1−x]FexO[subscript 4±δ] oxides that promote charge transfer via cross-gap hybridization to enhance electrocatalytic water splitting. Using selective substitution of lanthanum with strontium and nickel with iron to tune the extent to which transition metal and oxygen valence bands hybridize, we demonstrate remarkable catalytic activity of 10 mA cm⁻² at a 360 mV overpotential and mass activity of 1930 mA mg⁻¹[subscript ox] at 1.63 V via a mechanism that utilizes lattice oxygen. This work demonstrates that Ruddlesden–Popper materials can be utilized as active catalysts for oxygen evolution through rational design of structural and electronic configurations that are unattainable in many other crystalline metal oxide phases. |
---|