Computing the linear viscoelastic properties of soft gels using an optimally windowed chirp protocol
We use molecular dynamics simulations to investigate the linear viscoelastic response of a model three-dimensional particulate gel. The numerical simulations are combined with a novel test protocol (the optimally windowed chirp or OWCh), in which a continuous exponentially varying frequency sweep wi...
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Published: |
Society of Rheology
2018
|
Online Access: | http://hdl.handle.net/1721.1/119829 https://orcid.org/0000-0002-1988-8500 https://orcid.org/0000-0002-6393-5378 https://orcid.org/0000-0001-8323-2779 |
_version_ | 1811087263390498816 |
---|---|
author | Bouzid, Mehdi Divoux, Thibaut Del Gado, Emanuela Keshavarz, Bavand Geri, Michela McKinley, Gareth H |
author2 | Massachusetts Institute of Technology. Department of Mechanical Engineering |
author_facet | Massachusetts Institute of Technology. Department of Mechanical Engineering Bouzid, Mehdi Divoux, Thibaut Del Gado, Emanuela Keshavarz, Bavand Geri, Michela McKinley, Gareth H |
author_sort | Bouzid, Mehdi |
collection | MIT |
description | We use molecular dynamics simulations to investigate the linear viscoelastic response of a model three-dimensional particulate gel. The numerical simulations are combined with a novel test protocol (the optimally windowed chirp or OWCh), in which a continuous exponentially varying frequency sweep windowed by a tapered cosine function is applied. The mechanical response of the gel is then analyzed in the Fourier domain. We show that (i) OWCh leads to an accurate computation of the full frequency spectrum at a rate significantly faster than with the traditional discrete frequency sweeps, and with a reasonably high signal-to-noise ratio, and (ii) the bulk viscoelastic response of the microscopic model can be described in terms of a simple mesoscopic constitutive model. The simulated gel response is in fact well described by a mechanical model corresponding to a fractional Kelvin-Voigt model with a single Scott-Blair (or springpot) element and a spring in parallel. By varying the viscous damping and the particle mass used in the microscopic simulations over a wide range of values, we demonstrate the existence of a single master curve for the frequency dependence of the viscoelastic response of the gel that is fully predicted by the constitutive model. By developing a fast and robust protocol for evaluating the linear viscoelastic spectrum of these soft solids, we open the path toward novel multiscale insight into the rheological response for such complex materials. |
first_indexed | 2024-09-23T13:42:40Z |
format | Article |
id | mit-1721.1/119829 |
institution | Massachusetts Institute of Technology |
last_indexed | 2024-09-23T13:42:40Z |
publishDate | 2018 |
publisher | Society of Rheology |
record_format | dspace |
spelling | mit-1721.1/1198292022-09-28T15:43:14Z Computing the linear viscoelastic properties of soft gels using an optimally windowed chirp protocol Bouzid, Mehdi Divoux, Thibaut Del Gado, Emanuela Keshavarz, Bavand Geri, Michela McKinley, Gareth H Massachusetts Institute of Technology. Department of Mechanical Engineering Keshavarz, Bavand Geri, Michela McKinley, Gareth H We use molecular dynamics simulations to investigate the linear viscoelastic response of a model three-dimensional particulate gel. The numerical simulations are combined with a novel test protocol (the optimally windowed chirp or OWCh), in which a continuous exponentially varying frequency sweep windowed by a tapered cosine function is applied. The mechanical response of the gel is then analyzed in the Fourier domain. We show that (i) OWCh leads to an accurate computation of the full frequency spectrum at a rate significantly faster than with the traditional discrete frequency sweeps, and with a reasonably high signal-to-noise ratio, and (ii) the bulk viscoelastic response of the microscopic model can be described in terms of a simple mesoscopic constitutive model. The simulated gel response is in fact well described by a mechanical model corresponding to a fractional Kelvin-Voigt model with a single Scott-Blair (or springpot) element and a spring in parallel. By varying the viscous damping and the particle mass used in the microscopic simulations over a wide range of values, we demonstrate the existence of a single master curve for the frequency dependence of the viscoelastic response of the gel that is fully predicted by the constitutive model. By developing a fast and robust protocol for evaluating the linear viscoelastic spectrum of these soft solids, we open the path toward novel multiscale insight into the rheological response for such complex materials. 2018-12-21T20:28:07Z 2018-12-21T20:28:07Z 2018-07 2018-06 2018-12-14T13:44:38Z Article http://purl.org/eprint/type/JournalArticle 0148-6055 1520-8516 http://hdl.handle.net/1721.1/119829 Bouzid, Mehdi et al. “Computing the Linear Viscoelastic Properties of Soft Gels Using an Optimally Windowed Chirp Protocol.” Journal of Rheology 62, no. 4 (July 2018): 1037–1050 © 2018 The Society of Rheology https://orcid.org/0000-0002-1988-8500 https://orcid.org/0000-0002-6393-5378 https://orcid.org/0000-0001-8323-2779 http://dx.doi.org/10.1122/1.5018715 Journal of Rheology Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf Society of Rheology arXiv |
spellingShingle | Bouzid, Mehdi Divoux, Thibaut Del Gado, Emanuela Keshavarz, Bavand Geri, Michela McKinley, Gareth H Computing the linear viscoelastic properties of soft gels using an optimally windowed chirp protocol |
title | Computing the linear viscoelastic properties of soft gels using an optimally windowed chirp protocol |
title_full | Computing the linear viscoelastic properties of soft gels using an optimally windowed chirp protocol |
title_fullStr | Computing the linear viscoelastic properties of soft gels using an optimally windowed chirp protocol |
title_full_unstemmed | Computing the linear viscoelastic properties of soft gels using an optimally windowed chirp protocol |
title_short | Computing the linear viscoelastic properties of soft gels using an optimally windowed chirp protocol |
title_sort | computing the linear viscoelastic properties of soft gels using an optimally windowed chirp protocol |
url | http://hdl.handle.net/1721.1/119829 https://orcid.org/0000-0002-1988-8500 https://orcid.org/0000-0002-6393-5378 https://orcid.org/0000-0001-8323-2779 |
work_keys_str_mv | AT bouzidmehdi computingthelinearviscoelasticpropertiesofsoftgelsusinganoptimallywindowedchirpprotocol AT divouxthibaut computingthelinearviscoelasticpropertiesofsoftgelsusinganoptimallywindowedchirpprotocol AT delgadoemanuela computingthelinearviscoelasticpropertiesofsoftgelsusinganoptimallywindowedchirpprotocol AT keshavarzbavand computingthelinearviscoelasticpropertiesofsoftgelsusinganoptimallywindowedchirpprotocol AT gerimichela computingthelinearviscoelasticpropertiesofsoftgelsusinganoptimallywindowedchirpprotocol AT mckinleygarethh computingthelinearviscoelasticpropertiesofsoftgelsusinganoptimallywindowedchirpprotocol |