Evaluating simplified chemical mechanisms within present-day simulations of the Community Earth System Model version 1.2 with CAM4 (CESM1.2 CAM-chem): MOZART-4 vs. Reduced Hydrocarbon vs. Super-Fast chemistry
While state-of-the-art complex chemical mechanisms expand our understanding of atmospheric chemistry, their sheer size and computational requirements often limit simulations to short lengths or ensembles to only a few members. Here we present and compare three 25-year present-day offline simulations...
Main Authors: | , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Published: |
Copernicus GmbH
2019
|
Online Access: | http://hdl.handle.net/1721.1/120143 https://orcid.org/0000-0002-6396-5622 https://orcid.org/0000-0001-5925-3801 |
Summary: | While state-of-the-art complex chemical mechanisms expand our understanding of atmospheric chemistry, their sheer size and computational requirements often limit simulations to short lengths or ensembles to only a few members. Here we present and compare three 25-year present-day offline simulations with chemical mechanisms of different levels of complexity using the Community Earth System Model (CESM) Version 1.2 CAM-chem (CAM4): the Model for Ozone and Related Chemical Tracers, version 4 (MOZART-4) mechanism, the Reduced Hydrocarbon mechanism, and the Super-Fast mechanism. We show that, for most regions and time periods, differences in simulated ozone chemistry between these three mechanisms are smaller than the model-observation differences themselves. The MOZART-4 mechanism and the Reduced Hydrocarbon are in close agreement in their representation of ozone throughout the troposphere during all time periods (annual, seasonal, and diurnal). While the Super-Fast mechanism tends to have higher simulated ozone variability and differs from the MOZART-4 mechanism over regions of high biogenic emissions, it is surprisingly capable of simulating ozone adequately given its simplicity. We explore the trade-offs between chemical mechanism complexity and computational cost by identifying regions where the simpler mechanisms are comparable to the MOZART-4 mechanism and regions where they are not. The Super-Fast mechanism is 3 times as fast as the MOZART-4 mechanism, which allows for longer simulations or ensembles with more members that may not be feasible with the MOZART-4 mechanism given limited computational resources. |
---|