Characterization of Lipid Membrane Properties for Tunable Electroporation

Lipid bilayers form nanopores on the application of an electric field. This process of electroporation can be utilized in different applications ranging from targeted drug delivery in cells to nano-gating membrane for engineering applications. However, the ease of electroporation is dependent on the...

Full description

Bibliographic Details
Main Authors: Cho, Han-Jae Jeremy, Maroo, Shalabh, Wang, Evelyn
Other Authors: Massachusetts Institute of Technology. Department of Mechanical Engineering
Format: Article
Published: ASME International 2019
Online Access:http://hdl.handle.net/1721.1/120297
https://orcid.org/0000-0002-8272-690X
https://orcid.org/0000-0001-7045-1200
Description
Summary:Lipid bilayers form nanopores on the application of an electric field. This process of electroporation can be utilized in different applications ranging from targeted drug delivery in cells to nano-gating membrane for engineering applications. However, the ease of electroporation is dependent on the surface energy of the lipid layers and thus directly related to the packing structure of the lipid molecules. 1,2- dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid monolayers were deposited on a mica substrate using the Langmuir-Blodgett (LB) technique at different packing densities and analyzed using atomic force microscopy (AFM). The wetting behavior of these monolayers was investigated by contact angle measurement and molecular dynamics simulations. It was found that an equilibrium packing density of liquid-condensed (LC) phase DPPC likely exists and that water molecules can penetrate the monolayer displacing the lipid molecules. The surface tension of the monolayer in air and water was obtained along with its breakthrough force. Topics: Membranes, Electroporation