Flexible Low-Rank Statistical Modeling with Missing Data and Side Information

We explore a general statistical framework for low-rank modeling of matrix-valued data, based on convex optimization with a generalized nuclear norm penalty. We study several related problems: the usual low-rank matrix completion problem with flexible loss functions arising from generalized linear m...

Volledige beschrijving

Bibliografische gegevens
Hoofdauteurs: Fithian, William, Mazumder, Rahul
Andere auteurs: Sloan School of Management
Formaat: Artikel
Gepubliceerd in: Institute of Mathematical Statistics 2019
Online toegang:http://hdl.handle.net/1721.1/120549
https://orcid.org/0000-0003-1384-9743