Multi-task neural networks for personalized pain recognition from physiological signals
Pain is a complex and subjective experience that poses a number of measurement challenges. While self-report by the patient is viewed as the gold standard of pain assessment, this approach fails when patients cannot verbally communicate pain intensity or lack normal mental abilities. Here, we presen...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
Institute of Electrical and Electronics Engineers (IEEE)
2019
|
Online Access: | https://hdl.handle.net/1721.1/121967 |
Summary: | Pain is a complex and subjective experience that poses a number of measurement challenges. While self-report by the patient is viewed as the gold standard of pain assessment, this approach fails when patients cannot verbally communicate pain intensity or lack normal mental abilities. Here, we present a pain intensity measurement method based on physiological signals. Specifically, we implement a multi-task learning approach based on neural networks that accounts for individual differences in pain responses while still leveraging data from across the population. We test our method in a dataset containing multi-modal physiological responses to nociceptive pain. |
---|