18.335J / 6.337J Introduction to Numerical Methods, Fall 2010

This course offers an advanced introduction to numerical linear algebra. Topics include direct and iterative methods for linear systems, eigenvalue decompositions and QR/SVD factorizations, stability and accuracy of numerical algorithms, the IEEE floating point standard, sparse and structured matric...

Full description

Bibliographic Details
Main Author: Johnson, Steven G.
Other Authors: Massachusetts Institute of Technology. Department of Mathematics
Format: Learning Object
Language:en-US
Published: 2019
Subjects:
Online Access:https://hdl.handle.net/1721.1/122006
_version_ 1826195814437879808
author Johnson, Steven G.
author2 Massachusetts Institute of Technology. Department of Mathematics
author_facet Massachusetts Institute of Technology. Department of Mathematics
Johnson, Steven G.
author_sort Johnson, Steven G.
collection MIT
description This course offers an advanced introduction to numerical linear algebra. Topics include direct and iterative methods for linear systems, eigenvalue decompositions and QR/SVD factorizations, stability and accuracy of numerical algorithms, the IEEE floating point standard, sparse and structured matrices, preconditioning, linear algebra software. Problem sets require some knowledge of MATLAB®.
first_indexed 2024-09-23T10:15:54Z
format Learning Object
id mit-1721.1/122006
institution Massachusetts Institute of Technology
language en-US
last_indexed 2025-03-10T08:40:44Z
publishDate 2019
record_format dspace
spelling mit-1721.1/1220062025-02-24T14:57:41Z 18.335J / 6.337J Introduction to Numerical Methods, Fall 2010 Introduction to Numerical Methods Johnson, Steven G. Massachusetts Institute of Technology. Department of Mathematics Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science numerical linear algebra linear systems eigenvalue decomposition QR/SVD factorization numerical algorithms IEEE floating point standard sparse matrices structured matrices preconditioning linear algebra software Matlab 270102 This course offers an advanced introduction to numerical linear algebra. Topics include direct and iterative methods for linear systems, eigenvalue decompositions and QR/SVD factorizations, stability and accuracy of numerical algorithms, the IEEE floating point standard, sparse and structured matrices, preconditioning, linear algebra software. Problem sets require some knowledge of MATLAB®. 2019-08-20T19:30:37Z 2019-08-20T19:30:37Z 2010-12 2019-08-20T19:30:59Z Learning Object 18.335J-Fall2010 18.335J 6.337J IMSCP-MD5-636c1ffb66552969b65e4be5eeba9381 https://hdl.handle.net/1721.1/122006 en-US http://hdl.handle.net/1721.1/75282 This site (c) Massachusetts Institute of Technology 2019. Content within individual courses is (c) by the individual authors unless otherwise noted. The Massachusetts Institute of Technology is providing this Work (as defined below) under the terms of this Creative Commons public license ("CCPL" or "license") unless otherwise noted. The Work is protected by copyright and/or other applicable law. Any use of the work other than as authorized under this license is prohibited. By exercising any of the rights to the Work provided here, You (as defined below) accept and agree to be bound by the terms of this license. The Licensor, the Massachusetts Institute of Technology, grants You the rights contained here in consideration of Your acceptance of such terms and conditions. Attribution-NonCommercial-ShareAlike 3.0 Unported http://creativecommons.org/licenses/by-nc-sa/3.0/ text/plain text/html image/jpeg image/jpeg text/html application/pdf application/octet-stream application/pdf application/pdf application/pdf application/pdf application/octet-stream application/octet-stream application/pdf application/pdf application/octet-stream application/pdf application/octet-stream application/octet-stream application/octet-stream application/pdf application/pdf application/octet-stream text/html application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf text/html text/html text/html text/html text/html text/html text/html text/html text/html text/html text/html text/html text/html text/html text/html text/html text/html text/html text/html text/html text/html text/html text/html text/html text/html text/html text/html text/html text/html text/html text/html text/html text/html text/html text/html application/pdf application/pdf application/pdf application/pdf application/pdf text/html application/pdf application/pdf application/pdf text/html text/html application/octet-stream application/octet-stream application/octet-stream application/octet-stream application/octet-stream application/octet-stream application/octet-stream application/octet-stream application/octet-stream application/octet-stream application/octet-stream application/octet-stream application/octet-stream application/octet-stream application/octet-stream application/octet-stream application/octet-stream application/octet-stream application/octet-stream application/octet-stream application/octet-stream application/octet-stream application/octet-stream application/octet-stream application/octet-stream text/css text/css text/css text/css text/css text/css text/css text/css text/css text/css text/css text/css text/css text/css text/css text/html image/png image/png image/png image/png image/gif image/png image/png image/png image/jpeg image/gif image/png image/png image/png image/gif image/png image/png image/png image/png image/png image/png image/gif image/png image/png image/gif image/gif image/png image/png image/png image/png image/png image/png image/png image/png image/png image/gif image/jpeg image/gif image/png image/jpeg image/png image/png image/png image/png image/png image/png image/png image/png image/png image/gif image/png image/png image/jpeg image/gif image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/gif image/gif image/gif image/gif image/gif image/gif image/gif image/gif image/gif image/gif image/gif image/gif image/png image/gif application/octet-stream image/gif image/gif image/png image/gif image/gif image/gif image/png image/png application/octet-stream image/gif image/gif image/gif image/gif image/png image/gif image/gif application/octet-stream image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png text/html image/png image/png image/jpeg image/png image/png image/png image/png image/png text/html text/html Fall 2010
spellingShingle numerical linear algebra
linear systems
eigenvalue decomposition
QR/SVD factorization
numerical algorithms
IEEE floating point standard
sparse matrices
structured matrices
preconditioning
linear algebra software
Matlab
270102
Johnson, Steven G.
18.335J / 6.337J Introduction to Numerical Methods, Fall 2010
title 18.335J / 6.337J Introduction to Numerical Methods, Fall 2010
title_full 18.335J / 6.337J Introduction to Numerical Methods, Fall 2010
title_fullStr 18.335J / 6.337J Introduction to Numerical Methods, Fall 2010
title_full_unstemmed 18.335J / 6.337J Introduction to Numerical Methods, Fall 2010
title_short 18.335J / 6.337J Introduction to Numerical Methods, Fall 2010
title_sort 18 335j 6 337j introduction to numerical methods fall 2010
topic numerical linear algebra
linear systems
eigenvalue decomposition
QR/SVD factorization
numerical algorithms
IEEE floating point standard
sparse matrices
structured matrices
preconditioning
linear algebra software
Matlab
270102
url https://hdl.handle.net/1721.1/122006
work_keys_str_mv AT johnsonsteveng 18335j6337jintroductiontonumericalmethodsfall2010
AT johnsonsteveng introductiontonumericalmethods