Interpretable Basis Decomposition for Visual Explanation

Explanations of the decisions made by a deep neural network are important for human end-users to be able to understand and diagnose the trustworthiness of the system. Current neural networks used for visual recognition are generally used as black boxes that do not provide any human interpretable jus...

Full description

Bibliographic Details
Main Authors: Zhou, Bolei, Sun, Yiyou, Torralba, Antonio, Bau, David
Other Authors: Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Format: Book
Language:English
Published: Springer International Publishing 2019
Online Access:https://hdl.handle.net/1721.1/122673
Description
Summary:Explanations of the decisions made by a deep neural network are important for human end-users to be able to understand and diagnose the trustworthiness of the system. Current neural networks used for visual recognition are generally used as black boxes that do not provide any human interpretable justification for a prediction. In this work we propose a new framework called Interpretable Basis Decomposition for providing visual explanations for classification networks. By decomposing the neural activations of the input image into semantically interpretable components pre-trained from a large concept corpus, the proposed framework is able to disentangle the evidence encoded in the activation feature vector, and quantify the contribution of each piece of evidence to the final prediction. We apply our framework for providing explanations to several popular networks for visual recognition, and show it is able to explain the predictions given by the networks in a human-interpretable way. The human interpretability of the visual explanations provided by our framework and other recent explanation methods is evaluated through Amazon Mechanical Turk, showing that our framework generates more faithful and interpretable explanations (The code and data are available at https://github.com/CSAILVision/IBD).