Tunneling and ferroelectric based transistors for energy efficient electronics

Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019

Bibliographic Details
Main Author: Zubair, Ahmad,Ph.D.Massachusetts Institute of Technology.
Other Authors: Tomás Palacios.
Format: Thesis
Language:eng
Published: Massachusetts Institute of Technology 2019
Subjects:
Online Access:https://hdl.handle.net/1721.1/122744
_version_ 1811083538991153152
author Zubair, Ahmad,Ph.D.Massachusetts Institute of Technology.
author2 Tomás Palacios.
author_facet Tomás Palacios.
Zubair, Ahmad,Ph.D.Massachusetts Institute of Technology.
author_sort Zubair, Ahmad,Ph.D.Massachusetts Institute of Technology.
collection MIT
description Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019
first_indexed 2024-09-23T12:34:40Z
format Thesis
id mit-1721.1/122744
institution Massachusetts Institute of Technology
language eng
last_indexed 2024-09-23T12:34:40Z
publishDate 2019
publisher Massachusetts Institute of Technology
record_format dspace
spelling mit-1721.1/1227442019-11-06T03:03:43Z Tunneling and ferroelectric based transistors for energy efficient electronics Zubair, Ahmad,Ph.D.Massachusetts Institute of Technology. Tomás Palacios. Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science. Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science Electrical Engineering and Computer Science. Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019 Cataloged from PDF version of thesis. Includes bibliographical references (pages 208-221). Si CMOS technology is approaching its limit to meet the demand for future data-intensive energy efficient ubiquitous electronics. Emerging materials (i.e. low dimensional nanomaterials, novel dielectric/ferroelectric materials) show great promise to overcome the limits of the Si CMOS technology for specific applications. This thesis studies the prospects of two different emerging materials system (the atomically thin two-dimensional materials and ferroelectric oxides) in energy efficient electronic devices for future Systems-on-a-Chip (SoC's) applications. As the channel length of transistors has shrunk over the years, short-channel effects have become a major limiting factor to transistor miniaturization. Atomically thin MoS₂ is an ideal semiconductor material for field-effect transistors (FETs) with sub-10-nm channel lengths. We study the limit of channel length scaling in MoS₂ FET using the semiconducting-to-metallic phase transition of MoS₂ and demonstrate sub-10-nm channel-length transistor fabrication by directed self-assembly patterning of mono- and trilayer MoS₂ Novel device concepts based on quantum mechanical tunneling (i.e. inter-band tunneling, hot electron injection) and two-dimensional materials can overcome some of the limitations of conventional CMOS devices for both low power and high frequency. We demonstrate inter-band tunneling transistors with room temperature negative differential resistance using van der Waals heterostructure for low power applications. Moreover, we show vertical hot electron transistor (HET) utilizing tunneling injection of hot electrons, which may enable operation at frequencies beyond what Si CMOS can provide. The integration of the a highly conductive ultra-thin (0.3 nm) monolayer graphene with a GaN platform by van der Waals interaction can simultaneously offer both scalability and high performance in ballistic HET. In the last part of the thesis, we discuss how the use of ferroelectric Hf 0₂ with conventional (i.e. Si, GaN, InGaAs) semiconductor as well as two-dimensional materials systems offers a new degree of freedom when designing novel electronic devices. We demonstrate that the integration of ferroelectric Hf0₂ can enable ultra-low power (MoS₂ FET with subthreshold swing less than 60 mV/decade) as well as, potentially, higher operating frequencies. Finally, we present a proposal for a new analog synaptic device using ferroelectric Hf0₂ for in-memory computation in future SoC platforms. by Ahmad Zubair. Ph. D. Ph.D. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science 2019-11-04T20:22:10Z 2019-11-04T20:22:10Z 2019 2019 Thesis https://hdl.handle.net/1721.1/122744 1124763417 eng MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582 221 pages application/pdf Massachusetts Institute of Technology
spellingShingle Electrical Engineering and Computer Science.
Zubair, Ahmad,Ph.D.Massachusetts Institute of Technology.
Tunneling and ferroelectric based transistors for energy efficient electronics
title Tunneling and ferroelectric based transistors for energy efficient electronics
title_full Tunneling and ferroelectric based transistors for energy efficient electronics
title_fullStr Tunneling and ferroelectric based transistors for energy efficient electronics
title_full_unstemmed Tunneling and ferroelectric based transistors for energy efficient electronics
title_short Tunneling and ferroelectric based transistors for energy efficient electronics
title_sort tunneling and ferroelectric based transistors for energy efficient electronics
topic Electrical Engineering and Computer Science.
url https://hdl.handle.net/1721.1/122744
work_keys_str_mv AT zubairahmadphdmassachusettsinstituteoftechnology tunnelingandferroelectricbasedtransistorsforenergyefficientelectronics