On practical robustness of machine learning systems
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Автор: | Ilyas, Andrew. |
---|---|
Інші автори: | Constantinos Daskalakis. |
Формат: | Дисертація |
Мова: | eng |
Опубліковано: |
Massachusetts Institute of Technology
2019
|
Предмети: | |
Онлайн доступ: | https://hdl.handle.net/1721.1/122911 |
Схожі ресурси
-
Robust accelerated gradient methods for machine learning
за авторством: Fallah, Alireza.
Опубліковано: (2019) -
Principled approaches to robust machine learning and beyond
за авторством: Li, Jerry Zheng
Опубліковано: (2019) -
PreCog : a robust machine learning system to predict failure in a virtualized environment
за авторством: Rogal, Adam (Adam R.)
Опубліковано: (2009) -
Building efficient and practical machine learning systems
за авторством: Hu, Qinghao
Опубліковано: (2023) -
Natural robustness of machine learning in the open world
за авторством: Wei, Hongxin
Опубліковано: (2023)