Summary: | We present the results of an experimental investigation of the dynamics of droplets bouncing on a vibrating fluid bath for forcing accelerations above the Faraday threshold. Two distinct fluid viscosity and vibrational frequency combinations (20 cS-80 Hz and 50 cS-50 Hz) are considered, and the dependence of the system behavior on drop size and vibrational acceleration is characterized. A number of new dynamical regimes are reported, including meandering, zig-zagging, erratic bouncing, coalescing, and trapped regimes. Particular attention is given to the regime in which droplets change direction erratically and exhibit a dynamics akin to Brownian motion. We demonstrate that the effective diffusivity increases with vibrational acceleration and decreases with drop size, as suggested by simple scaling arguments.
|