Island topographies to reduce short-circuiting in stormwater detention ponds and treatment wetlands
Urban stormwater is an increasing environmental problem for cities worldwide. Many cities have turned to green infrastructure solutions, which provide water treatment and retention while also harnessing other ecosystem services. This study considered the design of detention ponds and treatment wetla...
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
Elsevier BV
2020
|
Online Access: | https://hdl.handle.net/1721.1/123466 |
_version_ | 1811097557821030400 |
---|---|
author | Balderas-Guzmán, Celina Cohen, Samantha R Xavier, ManoelLucas Machado Swingle, Tyler R Qiu, Waishan Nepf, Heidi |
author2 | Massachusetts Institute of Technology. Norman B. Leventhal Center for Advanced Urbanism |
author_facet | Massachusetts Institute of Technology. Norman B. Leventhal Center for Advanced Urbanism Balderas-Guzmán, Celina Cohen, Samantha R Xavier, ManoelLucas Machado Swingle, Tyler R Qiu, Waishan Nepf, Heidi |
author_sort | Balderas-Guzmán, Celina |
collection | MIT |
description | Urban stormwater is an increasing environmental problem for cities worldwide. Many cities have turned to green infrastructure solutions, which provide water treatment and retention while also harnessing other ecosystem services. This study considered the design of detention ponds and treatment wetlands with the goal of improving hydraulic performance (specifically reducing short-circuiting) while also increasing habitat diversity. Fifty-four basin topographies, including a variety of islands and berms, were compared to an open and a traditional serpentine basin. Using scaled physical models the hydraulic performance of each design was evaluated using tracer studies to construct the residence time distribution and to visually observe the circulation pattern. In addition, the earthwork construction cost and habitat diversity index (based on the Shannon-Weaver entropy measure) were estimated at field scale. The results reveal multiple design options that improve hydraulic performance, relative to both the open and serpentine basins, and which represent a range of habit diversity and cost. General guidelines for optimal configurations are discussed. Keywords: Stormwater detention ponds; Treatment wetlands; Residence time; Green infrastructure design |
first_indexed | 2024-09-23T17:01:18Z |
format | Article |
id | mit-1721.1/123466 |
institution | Massachusetts Institute of Technology |
language | en_US |
last_indexed | 2024-09-23T17:01:18Z |
publishDate | 2020 |
publisher | Elsevier BV |
record_format | dspace |
spelling | mit-1721.1/1234662022-09-29T23:08:28Z Island topographies to reduce short-circuiting in stormwater detention ponds and treatment wetlands Balderas-Guzmán, Celina Cohen, Samantha R Xavier, ManoelLucas Machado Swingle, Tyler R Qiu, Waishan Nepf, Heidi Massachusetts Institute of Technology. Norman B. Leventhal Center for Advanced Urbanism Massachusetts Institute of Technology. Department of Urban Studies and Planning Massachusetts Institute of Technology. Department of Civil and Environmental Engineering Massachusetts Institute of Technology. Department of Architecture Heidi Nepf Urban stormwater is an increasing environmental problem for cities worldwide. Many cities have turned to green infrastructure solutions, which provide water treatment and retention while also harnessing other ecosystem services. This study considered the design of detention ponds and treatment wetlands with the goal of improving hydraulic performance (specifically reducing short-circuiting) while also increasing habitat diversity. Fifty-four basin topographies, including a variety of islands and berms, were compared to an open and a traditional serpentine basin. Using scaled physical models the hydraulic performance of each design was evaluated using tracer studies to construct the residence time distribution and to visually observe the circulation pattern. In addition, the earthwork construction cost and habitat diversity index (based on the Shannon-Weaver entropy measure) were estimated at field scale. The results reveal multiple design options that improve hydraulic performance, relative to both the open and serpentine basins, and which represent a range of habit diversity and cost. General guidelines for optimal configurations are discussed. Keywords: Stormwater detention ponds; Treatment wetlands; Residence time; Green infrastructure design 2020-01-17T15:26:23Z 2020-01-17T15:26:23Z 2018-07 2018-01 Article http://purl.org/eprint/type/JournalArticle 0925-8574 https://hdl.handle.net/1721.1/123466 Balderas-Guzman, Celina et al. "Island topographies to reduce short-circuiting in stormwater detention ponds and treatment wetlands." Ecological Engineering 117 (July 2018): 182-193 © 2018 Elsevier B.V. en_US http://dx.doi.org/10.1016/j.ecoleng.2018.02.020 Ecological Engineering Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/ application/pdf Elsevier BV Prof. Nepf via Elizabeth Soergel |
spellingShingle | Balderas-Guzmán, Celina Cohen, Samantha R Xavier, ManoelLucas Machado Swingle, Tyler R Qiu, Waishan Nepf, Heidi Island topographies to reduce short-circuiting in stormwater detention ponds and treatment wetlands |
title | Island topographies to reduce short-circuiting in stormwater detention ponds and treatment wetlands |
title_full | Island topographies to reduce short-circuiting in stormwater detention ponds and treatment wetlands |
title_fullStr | Island topographies to reduce short-circuiting in stormwater detention ponds and treatment wetlands |
title_full_unstemmed | Island topographies to reduce short-circuiting in stormwater detention ponds and treatment wetlands |
title_short | Island topographies to reduce short-circuiting in stormwater detention ponds and treatment wetlands |
title_sort | island topographies to reduce short circuiting in stormwater detention ponds and treatment wetlands |
url | https://hdl.handle.net/1721.1/123466 |
work_keys_str_mv | AT balderasguzmancelina islandtopographiestoreduceshortcircuitinginstormwaterdetentionpondsandtreatmentwetlands AT cohensamanthar islandtopographiestoreduceshortcircuitinginstormwaterdetentionpondsandtreatmentwetlands AT xaviermanoellucasmachado islandtopographiestoreduceshortcircuitinginstormwaterdetentionpondsandtreatmentwetlands AT swingletylerr islandtopographiestoreduceshortcircuitinginstormwaterdetentionpondsandtreatmentwetlands AT qiuwaishan islandtopographiestoreduceshortcircuitinginstormwaterdetentionpondsandtreatmentwetlands AT nepfheidi islandtopographiestoreduceshortcircuitinginstormwaterdetentionpondsandtreatmentwetlands |