Multimodal wrist-worn devices for seizure detection and advancing research: Focus on the Empatica wristbands

Wearable automated seizure detection devices offer a high potential to improve seizure management, through continuous ambulatory monitoring, accurate seizure counts, and real-time alerts for prompt intervention. More importantly, these devices can be a life-saving help for people with a higher risk...

Full description

Bibliographic Details
Main Authors: Regalia, Giulia, Onorati, Francesco, Lai, Matteo, Caborni, Chiara, Picard, Rosalind W.
Other Authors: Massachusetts Institute of Technology. Media Laboratory
Format: Article
Published: Elsevier BV 2020
Online Access:https://hdl.handle.net/1721.1/123804
_version_ 1811071949633224704
author Regalia, Giulia
Onorati, Francesco
Lai, Matteo
Caborni, Chiara
Picard, Rosalind W.
author2 Massachusetts Institute of Technology. Media Laboratory
author_facet Massachusetts Institute of Technology. Media Laboratory
Regalia, Giulia
Onorati, Francesco
Lai, Matteo
Caborni, Chiara
Picard, Rosalind W.
author_sort Regalia, Giulia
collection MIT
description Wearable automated seizure detection devices offer a high potential to improve seizure management, through continuous ambulatory monitoring, accurate seizure counts, and real-time alerts for prompt intervention. More importantly, these devices can be a life-saving help for people with a higher risk of sudden unexpected death in epilepsy (SUDEP), especially in case of generalized tonic-clonic seizures (GTCS). The Embrace and E4 wristbands (Empatica) are the first commercially available multimodal wristbands that were designed to sense the physiological hallmarks of ongoing GTCS: while Embrace only embeds a machine learning-based detection algorithm, both E4 and Embrace devices are equipped with motion (accelerometers, ACC) and electrodermal activity (EDA) sensors and both the devices received medical clearance (E4 from EU CE, Embrace from EU CE and US FDA). The aim of this contribution is to provide updated evidence of the effectiveness of GTCS detection and monitoring relying on the combination of ACM and EDA sensors. A machine learning algorithm able to recognize ACC and EDA signatures of GTCS-like events has been developed on E4 data, labeled using gold-standard video-EEG examined by epileptologists in clinical centers, and has undergone continuous improvement. While keeping an elevated sensitivity to GTCS (92–100%), algorithm improvements and growing data availability led to lower false alarm rate (FAR) from the initial ˜2 down to 0.2–1 false alarms per day, as showed by retrospective and prospective analyses in inpatient settings. Algorithm adjustment to better discriminate real-life physical activities from GTCS, has brought the initial FAR of ˜6 on outpatient real life settings, down to values comparable to best-case clinical settings (FAR < 0.5), with comparable sensitivity. Moreover, using multimodal sensing, it has been possible not only to detect GTCS but also to quantify seizure-induced autonomic dysfunction, based on automatic features of abnormal motion and EDA. The latter biosignal correlates with the duration of post-ictal generalized EEG suppression, a biomarker observed in 100% of monitored SUDEP cases. Keywords: Epilepsy; Convulsive seizures; Wearable device; SUDEP; Electrodermal activity; Machine learning
first_indexed 2024-09-23T08:58:31Z
format Article
id mit-1721.1/123804
institution Massachusetts Institute of Technology
last_indexed 2024-09-23T08:58:31Z
publishDate 2020
publisher Elsevier BV
record_format dspace
spelling mit-1721.1/1238042022-09-26T09:35:14Z Multimodal wrist-worn devices for seizure detection and advancing research: Focus on the Empatica wristbands Regalia, Giulia Onorati, Francesco Lai, Matteo Caborni, Chiara Picard, Rosalind W. Massachusetts Institute of Technology. Media Laboratory Wearable automated seizure detection devices offer a high potential to improve seizure management, through continuous ambulatory monitoring, accurate seizure counts, and real-time alerts for prompt intervention. More importantly, these devices can be a life-saving help for people with a higher risk of sudden unexpected death in epilepsy (SUDEP), especially in case of generalized tonic-clonic seizures (GTCS). The Embrace and E4 wristbands (Empatica) are the first commercially available multimodal wristbands that were designed to sense the physiological hallmarks of ongoing GTCS: while Embrace only embeds a machine learning-based detection algorithm, both E4 and Embrace devices are equipped with motion (accelerometers, ACC) and electrodermal activity (EDA) sensors and both the devices received medical clearance (E4 from EU CE, Embrace from EU CE and US FDA). The aim of this contribution is to provide updated evidence of the effectiveness of GTCS detection and monitoring relying on the combination of ACM and EDA sensors. A machine learning algorithm able to recognize ACC and EDA signatures of GTCS-like events has been developed on E4 data, labeled using gold-standard video-EEG examined by epileptologists in clinical centers, and has undergone continuous improvement. While keeping an elevated sensitivity to GTCS (92–100%), algorithm improvements and growing data availability led to lower false alarm rate (FAR) from the initial ˜2 down to 0.2–1 false alarms per day, as showed by retrospective and prospective analyses in inpatient settings. Algorithm adjustment to better discriminate real-life physical activities from GTCS, has brought the initial FAR of ˜6 on outpatient real life settings, down to values comparable to best-case clinical settings (FAR < 0.5), with comparable sensitivity. Moreover, using multimodal sensing, it has been possible not only to detect GTCS but also to quantify seizure-induced autonomic dysfunction, based on automatic features of abnormal motion and EDA. The latter biosignal correlates with the duration of post-ictal generalized EEG suppression, a biomarker observed in 100% of monitored SUDEP cases. Keywords: Epilepsy; Convulsive seizures; Wearable device; SUDEP; Electrodermal activity; Machine learning 2020-02-13T18:44:24Z 2020-02-13T18:44:24Z 2019-02 2019-02 Article http://purl.org/eprint/type/JournalArticle 0920-1211 https://hdl.handle.net/1721.1/123804 Regalia, Giulia et al. "Multimodal wrist-worn devices for seizure detection and advancing research: Focus on the Empatica wristbands." Epilepsy Research 153 (July 2019): 79-82 © 2019 Elsevier http://dx.doi.org/10.1016/j.eplepsyres.2019.02.007 Epilepsy Research Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/ application/pdf Elsevier BV Prof. Picard via Elizabeth Soergel
spellingShingle Regalia, Giulia
Onorati, Francesco
Lai, Matteo
Caborni, Chiara
Picard, Rosalind W.
Multimodal wrist-worn devices for seizure detection and advancing research: Focus on the Empatica wristbands
title Multimodal wrist-worn devices for seizure detection and advancing research: Focus on the Empatica wristbands
title_full Multimodal wrist-worn devices for seizure detection and advancing research: Focus on the Empatica wristbands
title_fullStr Multimodal wrist-worn devices for seizure detection and advancing research: Focus on the Empatica wristbands
title_full_unstemmed Multimodal wrist-worn devices for seizure detection and advancing research: Focus on the Empatica wristbands
title_short Multimodal wrist-worn devices for seizure detection and advancing research: Focus on the Empatica wristbands
title_sort multimodal wrist worn devices for seizure detection and advancing research focus on the empatica wristbands
url https://hdl.handle.net/1721.1/123804
work_keys_str_mv AT regaliagiulia multimodalwristworndevicesforseizuredetectionandadvancingresearchfocusontheempaticawristbands
AT onoratifrancesco multimodalwristworndevicesforseizuredetectionandadvancingresearchfocusontheempaticawristbands
AT laimatteo multimodalwristworndevicesforseizuredetectionandadvancingresearchfocusontheempaticawristbands
AT cabornichiara multimodalwristworndevicesforseizuredetectionandadvancingresearchfocusontheempaticawristbands
AT picardrosalindw multimodalwristworndevicesforseizuredetectionandadvancingresearchfocusontheempaticawristbands