Excitons in 2D Organic–Inorganic Halide Perovskites
Layered perovskites are hybrid 2D materials, formed through the self-assembly of inorganic lead halide networks separated by organic ammonium cation layers. In these natural quantum-well structures, quantum and dielectric confinement lead to strongly bound excitonic states that depend sensitively on...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Published: |
Elsevier BV
2020
|
Online Access: | https://hdl.handle.net/1721.1/123836 |
_version_ | 1811073079365861376 |
---|---|
author | Tisdale, William A. Mauck, Catherine M. Tisdale, William A. |
author2 | Massachusetts Institute of Technology. Department of Chemical Engineering |
author_facet | Massachusetts Institute of Technology. Department of Chemical Engineering Tisdale, William A. Mauck, Catherine M. Tisdale, William A. |
author_sort | Tisdale, William A. |
collection | MIT |
description | Layered perovskites are hybrid 2D materials, formed through the self-assembly of inorganic lead halide networks separated by organic ammonium cation layers. In these natural quantum-well structures, quantum and dielectric confinement lead to strongly bound excitonic states that depend sensitively on the material composition. In this article, we review current understanding of exciton photophysics in layered perovskites and highlight the many ways in which their excitonic properties can be tuned. In particular, we focus on the coupling of exciton dynamics to lattice motion and local distortions of the soft and deformable hybrid lattice. These effects lead to complex excited-state dynamics, presenting new opportunities for design of optoelectronic materials and exploration of fundamental photophysics in quantum confined systems. Keywords: perovskite; hybrid material; 2D material; exciton; lead halide |
first_indexed | 2024-09-23T09:28:17Z |
format | Article |
id | mit-1721.1/123836 |
institution | Massachusetts Institute of Technology |
last_indexed | 2024-09-23T09:28:17Z |
publishDate | 2020 |
publisher | Elsevier BV |
record_format | dspace |
spelling | mit-1721.1/1238362022-09-30T14:38:02Z Excitons in 2D Organic–Inorganic Halide Perovskites Tisdale, William A. Mauck, Catherine M. Tisdale, William A. Massachusetts Institute of Technology. Department of Chemical Engineering Layered perovskites are hybrid 2D materials, formed through the self-assembly of inorganic lead halide networks separated by organic ammonium cation layers. In these natural quantum-well structures, quantum and dielectric confinement lead to strongly bound excitonic states that depend sensitively on the material composition. In this article, we review current understanding of exciton photophysics in layered perovskites and highlight the many ways in which their excitonic properties can be tuned. In particular, we focus on the coupling of exciton dynamics to lattice motion and local distortions of the soft and deformable hybrid lattice. These effects lead to complex excited-state dynamics, presenting new opportunities for design of optoelectronic materials and exploration of fundamental photophysics in quantum confined systems. Keywords: perovskite; hybrid material; 2D material; exciton; lead halide United States. Department of Energy (Award DE-SC0019345) 2020-02-21T16:27:49Z 2020-02-21T16:27:49Z 2019-07 2019-04 Article http://purl.org/eprint/type/JournalArticle 2589-5974 https://hdl.handle.net/1721.1/123836 Mauck, Catherine M. and William A. Tisdale. "Excitons in 2D Organic–Inorganic Halide Perovskites." Trends in Chemistry 1, 4 (July 2019): 380-393 © 2019 Elsevier Inc 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 http://dx.doi.org/10.1016/j.trechm.2019.04.003 Trends in Chemistry Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/ application/pdf Elsevier BV Prof. Tinsdale |
spellingShingle | Tisdale, William A. Mauck, Catherine M. Tisdale, William A. Excitons in 2D Organic–Inorganic Halide Perovskites |
title | Excitons in 2D Organic–Inorganic Halide Perovskites |
title_full | Excitons in 2D Organic–Inorganic Halide Perovskites |
title_fullStr | Excitons in 2D Organic–Inorganic Halide Perovskites |
title_full_unstemmed | Excitons in 2D Organic–Inorganic Halide Perovskites |
title_short | Excitons in 2D Organic–Inorganic Halide Perovskites |
title_sort | excitons in 2d organic inorganic halide perovskites |
url | https://hdl.handle.net/1721.1/123836 |
work_keys_str_mv | AT tisdalewilliama excitonsin2dorganicinorganichalideperovskites AT mauckcatherinem excitonsin2dorganicinorganichalideperovskites AT tisdalewilliama excitonsin2dorganicinorganichalideperovskites |