Excitons in 2D Organic–Inorganic Halide Perovskites

Layered perovskites are hybrid 2D materials, formed through the self-assembly of inorganic lead halide networks separated by organic ammonium cation layers. In these natural quantum-well structures, quantum and dielectric confinement lead to strongly bound excitonic states that depend sensitively on...

Full description

Bibliographic Details
Main Authors: Tisdale, William A., Mauck, Catherine M.
Other Authors: Massachusetts Institute of Technology. Department of Chemical Engineering
Format: Article
Published: Elsevier BV 2020
Online Access:https://hdl.handle.net/1721.1/123836
_version_ 1811073079365861376
author Tisdale, William A.
Mauck, Catherine M.
Tisdale, William A.
author2 Massachusetts Institute of Technology. Department of Chemical Engineering
author_facet Massachusetts Institute of Technology. Department of Chemical Engineering
Tisdale, William A.
Mauck, Catherine M.
Tisdale, William A.
author_sort Tisdale, William A.
collection MIT
description Layered perovskites are hybrid 2D materials, formed through the self-assembly of inorganic lead halide networks separated by organic ammonium cation layers. In these natural quantum-well structures, quantum and dielectric confinement lead to strongly bound excitonic states that depend sensitively on the material composition. In this article, we review current understanding of exciton photophysics in layered perovskites and highlight the many ways in which their excitonic properties can be tuned. In particular, we focus on the coupling of exciton dynamics to lattice motion and local distortions of the soft and deformable hybrid lattice. These effects lead to complex excited-state dynamics, presenting new opportunities for design of optoelectronic materials and exploration of fundamental photophysics in quantum confined systems. Keywords: perovskite; hybrid material; 2D material; exciton; lead halide
first_indexed 2024-09-23T09:28:17Z
format Article
id mit-1721.1/123836
institution Massachusetts Institute of Technology
last_indexed 2024-09-23T09:28:17Z
publishDate 2020
publisher Elsevier BV
record_format dspace
spelling mit-1721.1/1238362022-09-30T14:38:02Z Excitons in 2D Organic–Inorganic Halide Perovskites Tisdale, William A. Mauck, Catherine M. Tisdale, William A. Massachusetts Institute of Technology. Department of Chemical Engineering Layered perovskites are hybrid 2D materials, formed through the self-assembly of inorganic lead halide networks separated by organic ammonium cation layers. In these natural quantum-well structures, quantum and dielectric confinement lead to strongly bound excitonic states that depend sensitively on the material composition. In this article, we review current understanding of exciton photophysics in layered perovskites and highlight the many ways in which their excitonic properties can be tuned. In particular, we focus on the coupling of exciton dynamics to lattice motion and local distortions of the soft and deformable hybrid lattice. These effects lead to complex excited-state dynamics, presenting new opportunities for design of optoelectronic materials and exploration of fundamental photophysics in quantum confined systems. Keywords: perovskite; hybrid material; 2D material; exciton; lead halide United States. Department of Energy (Award DE-SC0019345) 2020-02-21T16:27:49Z 2020-02-21T16:27:49Z 2019-07 2019-04 Article http://purl.org/eprint/type/JournalArticle 2589-5974 https://hdl.handle.net/1721.1/123836 Mauck, Catherine M. and William A. Tisdale. "Excitons in 2D Organic–Inorganic Halide Perovskites." Trends in Chemistry 1, 4 (July 2019): 380-393 © 2019 Elsevier Inc 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 10.1016/j.trechm.2019.04.003 http://dx.doi.org/10.1016/j.trechm.2019.04.003 Trends in Chemistry Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/ application/pdf Elsevier BV Prof. Tinsdale
spellingShingle Tisdale, William A.
Mauck, Catherine M.
Tisdale, William A.
Excitons in 2D Organic–Inorganic Halide Perovskites
title Excitons in 2D Organic–Inorganic Halide Perovskites
title_full Excitons in 2D Organic–Inorganic Halide Perovskites
title_fullStr Excitons in 2D Organic–Inorganic Halide Perovskites
title_full_unstemmed Excitons in 2D Organic–Inorganic Halide Perovskites
title_short Excitons in 2D Organic–Inorganic Halide Perovskites
title_sort excitons in 2d organic inorganic halide perovskites
url https://hdl.handle.net/1721.1/123836
work_keys_str_mv AT tisdalewilliama excitonsin2dorganicinorganichalideperovskites
AT mauckcatherinem excitonsin2dorganicinorganichalideperovskites
AT tisdalewilliama excitonsin2dorganicinorganichalideperovskites