Faradaic electro-swing reactive adsorption for CO2 capture

Carbon capture is one of the foremost methods for curtailing greenhouse gas emissions. Incumbent technologies are inherently inefficient due to thermal energy losses, large footprint, or degradation of sorbent material. We report a solid-state faradaic electro-swing reactive adsorption system compri...

Full description

Bibliographic Details
Main Authors: Voskian, Sahag, Hatton, Trevor Alan
Other Authors: Massachusetts Institute of Technology. Department of Chemical Engineering
Format: Article
Language:English
Published: Royal Society of Chemistry (RSC) 2020
Online Access:https://hdl.handle.net/1721.1/123890
_version_ 1811084600704761856
author Voskian, Sahag
Hatton, Trevor Alan
author2 Massachusetts Institute of Technology. Department of Chemical Engineering
author_facet Massachusetts Institute of Technology. Department of Chemical Engineering
Voskian, Sahag
Hatton, Trevor Alan
author_sort Voskian, Sahag
collection MIT
description Carbon capture is one of the foremost methods for curtailing greenhouse gas emissions. Incumbent technologies are inherently inefficient due to thermal energy losses, large footprint, or degradation of sorbent material. We report a solid-state faradaic electro-swing reactive adsorption system comprising an electrochemical cell that exploits the reductive addition of CO2 to quinones for carbon capture. The reported device is compact and flexible, obviates the need for ancillary equipment, and eliminates the parasitic energy losses by using electrochemically activated redox carriers. An electrochemical cell with a polyanthraquinone–carbon nanotube composite negative electrode captures CO2 upon charging via the carboxylation of reduced quinones, and releases CO2 upon discharge. The cell architecture maximizes the surface area exposed to gas, allowing for ease of stacking of the cells in a parallel passage contactor bed. We demonstrate the capture of CO2 both in a sealed chamber and in an adsorption bed from inlet streams of CO2 concentrations as low as 0.6% (6000 ppm) and up to 10%, at a constant CO2 capacity with a faradaic efficiency of >90%, and a work of 40–90 kJ per mole of CO2 captured, with great durability of electrochemical cells showing <30% loss of capacity after 7000 cylces.
first_indexed 2024-09-23T12:53:46Z
format Article
id mit-1721.1/123890
institution Massachusetts Institute of Technology
language English
last_indexed 2024-09-23T12:53:46Z
publishDate 2020
publisher Royal Society of Chemistry (RSC)
record_format dspace
spelling mit-1721.1/1238902022-09-28T10:45:20Z Faradaic electro-swing reactive adsorption for CO2 capture Voskian, Sahag Hatton, Trevor Alan Massachusetts Institute of Technology. Department of Chemical Engineering Carbon capture is one of the foremost methods for curtailing greenhouse gas emissions. Incumbent technologies are inherently inefficient due to thermal energy losses, large footprint, or degradation of sorbent material. We report a solid-state faradaic electro-swing reactive adsorption system comprising an electrochemical cell that exploits the reductive addition of CO2 to quinones for carbon capture. The reported device is compact and flexible, obviates the need for ancillary equipment, and eliminates the parasitic energy losses by using electrochemically activated redox carriers. An electrochemical cell with a polyanthraquinone–carbon nanotube composite negative electrode captures CO2 upon charging via the carboxylation of reduced quinones, and releases CO2 upon discharge. The cell architecture maximizes the surface area exposed to gas, allowing for ease of stacking of the cells in a parallel passage contactor bed. We demonstrate the capture of CO2 both in a sealed chamber and in an adsorption bed from inlet streams of CO2 concentrations as low as 0.6% (6000 ppm) and up to 10%, at a constant CO2 capacity with a faradaic efficiency of >90%, and a work of 40–90 kJ per mole of CO2 captured, with great durability of electrochemical cells showing <30% loss of capacity after 7000 cylces. 2020-02-28T18:36:05Z 2020-02-28T18:36:05Z 2019-10 2019-07 2020-02-28T13:40:04Z Article http://purl.org/eprint/type/JournalArticle 1754-5692 1754-5706 https://hdl.handle.net/1721.1/123890 Voskian, Sahag and T. Alan Hatton. "Faradaic electro-swing reactive adsorption for CO2 capture." Energy and Environmental Science 12 (2019): 3530-47 ©2019 Author(s) en http://dx.doi.org/10.1039/c9ee02412c Energy and Environmental Science Creative Commons Attribution Noncommercial 3.0 unported license https://creativecommons.org/licenses/by-nc/3.0/ application/pdf Royal Society of Chemistry (RSC) Royal Society of Chemistry (RSC)
spellingShingle Voskian, Sahag
Hatton, Trevor Alan
Faradaic electro-swing reactive adsorption for CO2 capture
title Faradaic electro-swing reactive adsorption for CO2 capture
title_full Faradaic electro-swing reactive adsorption for CO2 capture
title_fullStr Faradaic electro-swing reactive adsorption for CO2 capture
title_full_unstemmed Faradaic electro-swing reactive adsorption for CO2 capture
title_short Faradaic electro-swing reactive adsorption for CO2 capture
title_sort faradaic electro swing reactive adsorption for co2 capture
url https://hdl.handle.net/1721.1/123890
work_keys_str_mv AT voskiansahag faradaicelectroswingreactiveadsorptionforco2capture
AT hattontrevoralan faradaicelectroswingreactiveadsorptionforco2capture