Summary: | In the design of tall buildings, the lateral system that resists wind and seismic loading usually dominates the structural engineering effort; therefore, optimal lateral system design is important for material efficiency. In a shear-wall-based building, the conventional design process starts with an architect generating a floor plan, which is then passed to a structural engineer, who, based on knowledge and prior experience, tries to place shear walls to balance conflicting requirements: minimum structural weight, satisfactory structural strength and serviceability, conformity to architectural layout. This design process can be slow and inefficient, requiring a trial-and-error approach that is unlikely to lead to the best solution. The work presented in this paper intends to accelerate the process with an optimization system involving a ground structure program formulation, a modified evolutionary algorithm, and innovative computational techniques. Unlike existing work that focuses either exclusively on structural performance or architectural layout, this research integrates both. An efficient computational design methodology for shear wall layout in plan is introduced. The method minimizes structural weight with constraints on torsion, flexural strength, shear strength, drift, and openings and accessibility. It can be applied from the very beginning of floor plan design or after generating an architectural floor plan. This paper demonstrates the potential of this approach through a variety of case studies. Key contributions include a novel application of the ground structure method, a fast and robust modified evolutionary algorithm, and a simplified auto-calculation system for reinforced concrete design. Keywords: Conceptual structural design; Structural optimization; Topology optimization; Shear wall design; Reinforced concrete
|