A comparative look at structure-function roles in light-harvesting dynamics of purple bacteria

Thesis: Ph. D., Massachusetts Institute of Technology, Department of Chemistry, 2019

Bibliographic Details
Main Author: Tong, Ashley(Ashley Lynn)
Other Authors: Gabriela Schlau-Cohen.
Format: Thesis
Language:eng
Published: Massachusetts Institute of Technology 2020
Subjects:
Online Access:https://hdl.handle.net/1721.1/124055
_version_ 1811070608310534144
author Tong, Ashley(Ashley Lynn)
author2 Gabriela Schlau-Cohen.
author_facet Gabriela Schlau-Cohen.
Tong, Ashley(Ashley Lynn)
author_sort Tong, Ashley(Ashley Lynn)
collection MIT
description Thesis: Ph. D., Massachusetts Institute of Technology, Department of Chemistry, 2019
first_indexed 2024-09-23T08:38:48Z
format Thesis
id mit-1721.1/124055
institution Massachusetts Institute of Technology
language eng
last_indexed 2024-09-23T08:38:48Z
publishDate 2020
publisher Massachusetts Institute of Technology
record_format dspace
spelling mit-1721.1/1240552020-03-10T03:32:55Z A comparative look at structure-function roles in light-harvesting dynamics of purple bacteria Tong, Ashley(Ashley Lynn) Gabriela Schlau-Cohen. Massachusetts Institute of Technology. Department of Chemistry. Massachusetts Institute of Technology. Department of Chemistry Chemistry. Thesis: Ph. D., Massachusetts Institute of Technology, Department of Chemistry, 2019 Cataloged from PDF version of thesis. Includes bibliographical references (pages 67-79). Using a unique approach to solar energy conversion, photosynthetic organisms have developed a light-harvesting process with near unity quantum efficiency. Light-harvesting proteins transfer energy from the sun to reach a central location, the reaction center, where charge separation occurs and energy is converted to chemical energy. Moreover, these proteins are able to carry out this efficient transfer in cellular membranes despite the complex environment found in these membranes. Particularly, light-harvesting in photosynthetic purple bacteria uses a diverse set of tools from species to species to efficiently transfer energy through this protein network. Induced by their habitats, external environmental pressures on the fitness of purple bacteria have caused species to evolve different mechanisms in order to deal with thesel pressures. Although these complexes have been studied for some time, there is still very little known about particular species. Additionally, most previous work has been on non-native samples, such as detergent solubilized proteins, or on complex membranes such as vesicles, chromatophores, or whole membranes that contain multiple proteins with multiple processes occurring simultaneously. This work investigates how photosynthetic light-harvesting complexes are able to achieve their impressive efficiency using ensemble ultrafast spectroscopy to measure energy transfer dynamics and near-native discoidal model membrane-discs. These model membrane-discs provide a controlled environment to effectively study how energy is transferred in a single protein and between particular sets of proteins, allowing individual steps in the light-harvesting process to be probed without other processes interfering. They also provide a near-native system to explore how lipid-protein and protein-protein interactions affect the energy transfer kinetics in these proteins. Additionally, this work explores the differences in energy transfer kinetics of light-harvesting proteins between species of purple bacteria. Overall, this provides new insights into the role the membrane plays in light-harvesting and how the composition of proteins within the native membrane of different species of purple bacteria can add variation to energy transfer kinetics. by Ashley Tong. Ph. D. Ph.D. Massachusetts Institute of Technology, Department of Chemistry 2020-03-09T18:51:22Z 2020-03-09T18:51:22Z 2019 2019 Thesis https://hdl.handle.net/1721.1/124055 1142099842 eng MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582 79 pages application/pdf Massachusetts Institute of Technology
spellingShingle Chemistry.
Tong, Ashley(Ashley Lynn)
A comparative look at structure-function roles in light-harvesting dynamics of purple bacteria
title A comparative look at structure-function roles in light-harvesting dynamics of purple bacteria
title_full A comparative look at structure-function roles in light-harvesting dynamics of purple bacteria
title_fullStr A comparative look at structure-function roles in light-harvesting dynamics of purple bacteria
title_full_unstemmed A comparative look at structure-function roles in light-harvesting dynamics of purple bacteria
title_short A comparative look at structure-function roles in light-harvesting dynamics of purple bacteria
title_sort comparative look at structure function roles in light harvesting dynamics of purple bacteria
topic Chemistry.
url https://hdl.handle.net/1721.1/124055
work_keys_str_mv AT tongashleyashleylynn acomparativelookatstructurefunctionrolesinlightharvestingdynamicsofpurplebacteria
AT tongashleyashleylynn comparativelookatstructurefunctionrolesinlightharvestingdynamicsofpurplebacteria