Simulations of microlayer formation in nucleate boiling

As a bubble grows outside of a cavity during nucleate boiling, viscous effects can be large enough compared to surface tension to impede liquid motion and trap a thin liquid layer, referred to as the microlayer, underneath the growing bubble. Numerical simulations of nucleate boiling typically resol...

Full description

Bibliographic Details
Main Authors: Guion, Alexandre Nicolas, Zaleski, Stéphane, Buongiorno, Jacopo
Other Authors: Massachusetts Institute of Technology. Department of Nuclear Science and Engineering
Format: Article
Language:English
Published: Elsevier BV 2020
Subjects:
Online Access:https://hdl.handle.net/1721.1/124323
Description
Summary:As a bubble grows outside of a cavity during nucleate boiling, viscous effects can be large enough compared to surface tension to impede liquid motion and trap a thin liquid layer, referred to as the microlayer, underneath the growing bubble. Numerical simulations of nucleate boiling typically resolve the macroscopic liquid-vapor interface of the bubble, but resort to subgrid models to account for micro scale effects, such as the evaporation of the microlayer. Evaporation models require initialization of the microlayer shape and extension, but models for microlayer formation are either physically incomplete or purely empirical. In this work, the Volume-Of-Fluid (VOF) method, implemented in the Gerris code, is used to numerically reproduce the hydrodynamics of hemispherical bubble growth at the wall, and resolve the formation of the microlayer with an unprecedented resolution. The simulations are validated against the latest experimental data and compared to existing analytical models. Lastly, remaining gaps in building a generally applicable model for the formation of the microlayer are presented.