Solubility Limit of Cu and Factors Governing the Reactivity of Cu–CeO[subscript 2] Assessed from First-Principles Defect Chemistry and Thermodynamics

Cu-CeO[subscript 2] is a promising material system for low-temperature water gas shift reactions. The solubility and oxidation state of Cu in Cu-CeO[subscript 2] is important for these reactions, but these values have been unclear from the literature to date. We used first-principle calculations and...

Full description

Bibliographic Details
Main Authors: Sun, Lixin, Yildiz, Bilge
Other Authors: Massachusetts Institute of Technology. Department of Materials Science and Engineering
Format: Article
Language:English
Published: American Chemical Society (ACS) 2020
Online Access:https://hdl.handle.net/1721.1/124376
Description
Summary:Cu-CeO[subscript 2] is a promising material system for low-temperature water gas shift reactions. The solubility and oxidation state of Cu in Cu-CeO[subscript 2] is important for these reactions, but these values have been unclear from the literature to date. We used first-principle calculations and statistical thermodynamics to assess Cu defect configurations and oxidation states in bulk ceria, at both equilibrium and non-equilibrium conditions. Cu solubility was found to be very low, lower than ppm level at equilibrium, indicating that the nanoparticles with high Cu content reported in experimental literature are, in fact, in non-equilibrium states. Thus, these non-equilibrium states were also assessed by fixing the Cu content from 0.001 to 1%. Under oxygen-rich conditions, Cu takes 3+, serving as an acceptor substitutional dopant. Increasing Cu content increases the concentrations of oxygen vacancies and Ce[superscript 3+] polarons, which can induce a higher catalytic activity compared to undoped ceria. In addition, with reducing conditions, the oxidation/reduction of the Cu between 1+ and 2+ can also facilitate surface reactions. These findings provide insights into why a higher Cu content can enhance the catalytic activity in Cu-CeO[subscript 2] .