Dendrimer-Au nanoparticle network covered alumina membrane for ion rectification and enhanced bioanalysis

Ion transport in an artificial asymmetric nanoporous membrane, which is similar to biological ion channels, can be used for biosensing. Here, a dendrimer-Au nanoparticle network (DAN) is in situ assembled on a nanoporous anodic aluminum oxide (AAO) surface, forming a DAN/AAO hybrid membrane. Benefit...

Full description

Bibliographic Details
Main Authors: Wang, Chen, Zhao, Xiao-Ping, Liu, Fei-Fei, Chen, Yuming, Xia, Xing-Hua, Li, Ju
Other Authors: Massachusetts Institute of Technology. Department of Materials Science and Engineering
Format: Article
Language:English
Published: American Chemical Society (ACS) 2020
Online Access:https://hdl.handle.net/1721.1/124494
Description
Summary:Ion transport in an artificial asymmetric nanoporous membrane, which is similar to biological ion channels, can be used for biosensing. Here, a dendrimer-Au nanoparticle network (DAN) is in situ assembled on a nanoporous anodic aluminum oxide (AAO) surface, forming a DAN/AAO hybrid membrane. Benefiting from the high surface area and anion selectivity of DAN, the prepared DAN/AAO hybrid presents selective ion transport. Under a bias potential, a diode-like current-potential (I-V) response is observed. The obtained ionic current rectification (ICR) property can be tuned by the ion valence and pH value of the electrolyte. The rectified ionic current endows the as-prepared DAN/AAO hybrid with the ability of enhanced bioanalysis. Sensitive capture and detection of circulating tumor cells (CTCs) with a detection limit of 80 cells mL-1 as well as excellent reusability can be achieved. ©2020 keywords: dendrimer-Au nanoparticle network; hybrid membrane; ion selectivity; ionic current rectification; enhanced bioanalysis