A framework to assess the economic and uncertainty implications for technologies for use in decarbonization

This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.

Bibliographic Details
Main Author: Dawson, Karen Margaret.
Other Authors: Michael Golay.
Format: Thesis
Language:eng
Published: Massachusetts Institute of Technology 2020
Subjects:
Online Access:https://hdl.handle.net/1721.1/124576
_version_ 1811082787600465920
author Dawson, Karen Margaret.
author2 Michael Golay.
author_facet Michael Golay.
Dawson, Karen Margaret.
author_sort Dawson, Karen Margaret.
collection MIT
description This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
first_indexed 2024-09-23T12:09:00Z
format Thesis
id mit-1721.1/124576
institution Massachusetts Institute of Technology
language eng
last_indexed 2024-09-23T12:09:00Z
publishDate 2020
publisher Massachusetts Institute of Technology
record_format dspace
spelling mit-1721.1/1245762020-04-14T03:19:24Z A framework to assess the economic and uncertainty implications for technologies for use in decarbonization Dawson, Karen Margaret. Michael Golay. Massachusetts Institute of Technology. Department of Physics. Massachusetts Institute of Technology. Department of Physics Physics. This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. Thesis: Ph. D., Massachusetts Institute of Technology, Department of Physics, 2019 Page 165 blank. Cataloged from student-submitted PDF version of thesis. Includes bibliographical references (pages 137-139). The accumulation of greenhouse gasses is causing climate change on a global scale. From simulations of warming scenarios, it appears that complete replacements of fossil fuels within the global energy economy must occur within about 60 years if warming is to be limited to 2°C (Prinn et al., 2011). This means that the discussion about which pathways to decarbonization to pursue will need to occur soon, and will likely be difficult to correct later. This thesis developed and demonstrated two frameworks that can be used to guide discussions on decarbonization pathway choices. The first framework determines the economic usefulness of a technology by finding the difference in total system cost with and without that technology (the opportunity cost of not utilizing the technology). The second framework quantifies uncertainties in proposed decarbonization pathways, propagates them through to target variables (such as carbon emissions), and calculates the probability of failing (or succeeding) to meet a target. Each framework is demonstrated with an example case set in the year 2050. The first framework assessed the economic usefulness of nuclear technology in regions in the United States, China and the United Kingdom at carbon emission constraints from 500 g/kWh to 1 g/kWh. It was found that the economic usefulness of nuclear technology depends upon the capital cost of nuclear as well as the renewable resources of the region. The second framework is used to assess the probability of meeting carbon emission targets at different carbon prices. It is found that nuclear technology increases the probability of succeeding to meet a carbon emission target (as compared to a scenario where nuclear technology is unavailable). In addition, it is found that cases that benefit nuclear technology (such as electrification of space heating or a flexible, low-price electricity market) further increase the probability of succeeding to meet a carbon emission target. It is also found that the uncertainty in discount rate and nuclear capital cost have the biggest influence upon the distribution of possible carbon emissions in 2050. The development and demonstration of these frameworks show how discussions on decarbonization pathway choices can be guided. As the timeline to decarbonize diminishes, the choice of which decarbonization pathway to choose will shift from optimizing based on cost to a balance of optimizing cost and risk. by Karen Dawson. Ph. D. Ph.D. Massachusetts Institute of Technology, Department of Physics 2020-04-13T18:24:00Z 2020-04-13T18:24:00Z 2019 2019 Thesis https://hdl.handle.net/1721.1/124576 1149091146 eng MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582 165 pages application/pdf Massachusetts Institute of Technology
spellingShingle Physics.
Dawson, Karen Margaret.
A framework to assess the economic and uncertainty implications for technologies for use in decarbonization
title A framework to assess the economic and uncertainty implications for technologies for use in decarbonization
title_full A framework to assess the economic and uncertainty implications for technologies for use in decarbonization
title_fullStr A framework to assess the economic and uncertainty implications for technologies for use in decarbonization
title_full_unstemmed A framework to assess the economic and uncertainty implications for technologies for use in decarbonization
title_short A framework to assess the economic and uncertainty implications for technologies for use in decarbonization
title_sort framework to assess the economic and uncertainty implications for technologies for use in decarbonization
topic Physics.
url https://hdl.handle.net/1721.1/124576
work_keys_str_mv AT dawsonkarenmargaret aframeworktoassesstheeconomicanduncertaintyimplicationsfortechnologiesforuseindecarbonization
AT dawsonkarenmargaret frameworktoassesstheeconomicanduncertaintyimplicationsfortechnologiesforuseindecarbonization