Single-Cell RNA-Seq Reveals AML Hierarchies Relevant to Disease Progression and Immunity

Acute myeloid leukemia (AML) is a heterogeneous disease that resides within a complex microenvironment, complicating efforts to understand how different cell types contribute to disease progression. We combined single-cell RNA sequencing and genotyping to profile 38,410 cells from 40 bone marrow asp...

Full description

Bibliographic Details
Main Authors: van Galen, Peter, Hovestadt, Volker, Wadsworth II, Marc H., Hughes, Travis K., Griffin, Gabriel K., Battaglia, Sofia, Verga, Julia A., Stephansky, Jason, Pastika, Timothy J., Lombardi Story, Jennifer, Pinkus, Geraldine S., Pozdnyakova, Olga, Galinsky, Ilene, Stone, Richard M., Graubert, Timothy A., Shalek, Alex K., Aster, Jon C., Lane, Andrew A., Bernstein, Bradley E.
Other Authors: Massachusetts Institute of Technology. Department of Chemistry
Format: Article
Language:English
Published: Elsevier BV 2020
Online Access:https://hdl.handle.net/1721.1/125158
_version_ 1826212857212043264
author van Galen, Peter
Hovestadt, Volker
Wadsworth II, Marc H.
Hughes, Travis K.
Griffin, Gabriel K.
Battaglia, Sofia
Verga, Julia A.
Stephansky, Jason
Pastika, Timothy J.
Lombardi Story, Jennifer
Pinkus, Geraldine S.
Pozdnyakova, Olga
Galinsky, Ilene
Stone, Richard M.
Graubert, Timothy A.
Shalek, Alex K.
Aster, Jon C.
Lane, Andrew A.
Bernstein, Bradley E.
author2 Massachusetts Institute of Technology. Department of Chemistry
author_facet Massachusetts Institute of Technology. Department of Chemistry
van Galen, Peter
Hovestadt, Volker
Wadsworth II, Marc H.
Hughes, Travis K.
Griffin, Gabriel K.
Battaglia, Sofia
Verga, Julia A.
Stephansky, Jason
Pastika, Timothy J.
Lombardi Story, Jennifer
Pinkus, Geraldine S.
Pozdnyakova, Olga
Galinsky, Ilene
Stone, Richard M.
Graubert, Timothy A.
Shalek, Alex K.
Aster, Jon C.
Lane, Andrew A.
Bernstein, Bradley E.
author_sort van Galen, Peter
collection MIT
description Acute myeloid leukemia (AML) is a heterogeneous disease that resides within a complex microenvironment, complicating efforts to understand how different cell types contribute to disease progression. We combined single-cell RNA sequencing and genotyping to profile 38,410 cells from 40 bone marrow aspirates, including 16 AML patients and five healthy donors. We then applied a machine learning classifier to distinguish a spectrum of malignant cell types whose abundances varied between patients and between subclones in the same tumor. Cell type compositions correlated with prototypic genetic lesions, including an association of FLT3-ITD with abundant progenitor-like cells. Primitive AML cells exhibited dysregulated transcriptional programs with co-expression of stemness and myeloid priming genes and had prognostic significance. Differentiated monocyte-like AML cells expressed diverse immunomodulatory genes and suppressed T cell activity in vitro. In conclusion, we provide single-cell technologies and an atlas of AML cell states, regulators, and markers with implications for precision medicine and immune therapies. Video Abstract: A combination of transcriptomics and mutational analyses in single cells from acute myeloid leukemia patients reveals the existence of distinct functional subsets and their associated drivers.
first_indexed 2024-09-23T15:38:55Z
format Article
id mit-1721.1/125158
institution Massachusetts Institute of Technology
language English
last_indexed 2024-09-23T15:38:55Z
publishDate 2020
publisher Elsevier BV
record_format dspace
spelling mit-1721.1/1251582022-09-29T15:16:12Z Single-Cell RNA-Seq Reveals AML Hierarchies Relevant to Disease Progression and Immunity van Galen, Peter Hovestadt, Volker Wadsworth II, Marc H. Hughes, Travis K. Griffin, Gabriel K. Battaglia, Sofia Verga, Julia A. Stephansky, Jason Pastika, Timothy J. Lombardi Story, Jennifer Pinkus, Geraldine S. Pozdnyakova, Olga Galinsky, Ilene Stone, Richard M. Graubert, Timothy A. Shalek, Alex K. Aster, Jon C. Lane, Andrew A. Bernstein, Bradley E. Massachusetts Institute of Technology. Department of Chemistry Massachusetts Institute of Technology. Institute for Medical Engineering & Science Koch Institute for Integrative Cancer Research at MIT Acute myeloid leukemia (AML) is a heterogeneous disease that resides within a complex microenvironment, complicating efforts to understand how different cell types contribute to disease progression. We combined single-cell RNA sequencing and genotyping to profile 38,410 cells from 40 bone marrow aspirates, including 16 AML patients and five healthy donors. We then applied a machine learning classifier to distinguish a spectrum of malignant cell types whose abundances varied between patients and between subclones in the same tumor. Cell type compositions correlated with prototypic genetic lesions, including an association of FLT3-ITD with abundant progenitor-like cells. Primitive AML cells exhibited dysregulated transcriptional programs with co-expression of stemness and myeloid priming genes and had prognostic significance. Differentiated monocyte-like AML cells expressed diverse immunomodulatory genes and suppressed T cell activity in vitro. In conclusion, we provide single-cell technologies and an atlas of AML cell states, regulators, and markers with implications for precision medicine and immune therapies. Video Abstract: A combination of transcriptomics and mutational analyses in single cells from acute myeloid leukemia patients reveals the existence of distinct functional subsets and their associated drivers. 2020-05-11T19:28:19Z 2020-05-11T19:28:19Z 2019-03 2018-12 2020-03-17T17:17:52Z Article http://purl.org/eprint/type/JournalArticle 0092-8674 https://hdl.handle.net/1721.1/125158 van Galen, Peter et al. "Single-Cell RNA-Seq Reveals AML Hierarchies Relevant to Disease Progression and Immunity." Cell 176, 6 (March 2019): P1265-1281.e24 © 2019 Elsevier Inc en http://dx.doi.org/10.1016/j.cell.2019.01.031 Cell Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/ application/pdf Elsevier BV PMC
spellingShingle van Galen, Peter
Hovestadt, Volker
Wadsworth II, Marc H.
Hughes, Travis K.
Griffin, Gabriel K.
Battaglia, Sofia
Verga, Julia A.
Stephansky, Jason
Pastika, Timothy J.
Lombardi Story, Jennifer
Pinkus, Geraldine S.
Pozdnyakova, Olga
Galinsky, Ilene
Stone, Richard M.
Graubert, Timothy A.
Shalek, Alex K.
Aster, Jon C.
Lane, Andrew A.
Bernstein, Bradley E.
Single-Cell RNA-Seq Reveals AML Hierarchies Relevant to Disease Progression and Immunity
title Single-Cell RNA-Seq Reveals AML Hierarchies Relevant to Disease Progression and Immunity
title_full Single-Cell RNA-Seq Reveals AML Hierarchies Relevant to Disease Progression and Immunity
title_fullStr Single-Cell RNA-Seq Reveals AML Hierarchies Relevant to Disease Progression and Immunity
title_full_unstemmed Single-Cell RNA-Seq Reveals AML Hierarchies Relevant to Disease Progression and Immunity
title_short Single-Cell RNA-Seq Reveals AML Hierarchies Relevant to Disease Progression and Immunity
title_sort single cell rna seq reveals aml hierarchies relevant to disease progression and immunity
url https://hdl.handle.net/1721.1/125158
work_keys_str_mv AT vangalenpeter singlecellrnaseqrevealsamlhierarchiesrelevanttodiseaseprogressionandimmunity
AT hovestadtvolker singlecellrnaseqrevealsamlhierarchiesrelevanttodiseaseprogressionandimmunity
AT wadsworthiimarch singlecellrnaseqrevealsamlhierarchiesrelevanttodiseaseprogressionandimmunity
AT hughestravisk singlecellrnaseqrevealsamlhierarchiesrelevanttodiseaseprogressionandimmunity
AT griffingabrielk singlecellrnaseqrevealsamlhierarchiesrelevanttodiseaseprogressionandimmunity
AT battagliasofia singlecellrnaseqrevealsamlhierarchiesrelevanttodiseaseprogressionandimmunity
AT vergajuliaa singlecellrnaseqrevealsamlhierarchiesrelevanttodiseaseprogressionandimmunity
AT stephanskyjason singlecellrnaseqrevealsamlhierarchiesrelevanttodiseaseprogressionandimmunity
AT pastikatimothyj singlecellrnaseqrevealsamlhierarchiesrelevanttodiseaseprogressionandimmunity
AT lombardistoryjennifer singlecellrnaseqrevealsamlhierarchiesrelevanttodiseaseprogressionandimmunity
AT pinkusgeraldines singlecellrnaseqrevealsamlhierarchiesrelevanttodiseaseprogressionandimmunity
AT pozdnyakovaolga singlecellrnaseqrevealsamlhierarchiesrelevanttodiseaseprogressionandimmunity
AT galinskyilene singlecellrnaseqrevealsamlhierarchiesrelevanttodiseaseprogressionandimmunity
AT stonerichardm singlecellrnaseqrevealsamlhierarchiesrelevanttodiseaseprogressionandimmunity
AT grauberttimothya singlecellrnaseqrevealsamlhierarchiesrelevanttodiseaseprogressionandimmunity
AT shalekalexk singlecellrnaseqrevealsamlhierarchiesrelevanttodiseaseprogressionandimmunity
AT asterjonc singlecellrnaseqrevealsamlhierarchiesrelevanttodiseaseprogressionandimmunity
AT laneandrewa singlecellrnaseqrevealsamlhierarchiesrelevanttodiseaseprogressionandimmunity
AT bernsteinbradleye singlecellrnaseqrevealsamlhierarchiesrelevanttodiseaseprogressionandimmunity