Learning an Unknown Network State in Routing Games
We study learning dynamics induced by myopic travelers who repeatedly play a routing game on a transportation network with an unknown state. The state impacts cost functions of one or more edges of the network. In each stage, travelers choose their routes according to Wardrop equilibrium based on pu...
Hlavní autoři: | Wu, Manxi, Amin, Saurabh |
---|---|
Další autoři: | Massachusetts Institute of Technology. Institute for Data, Systems, and Society |
Médium: | Článek |
Jazyk: | English |
Vydáno: |
Elsevier BV
2020
|
On-line přístup: | https://hdl.handle.net/1721.1/125223 |
Podobné jednotky
-
Value of Information in Bayesian Routing Games
Autor: Wu, Manxi, a další
Vydáno: (2021) -
Information Design for Regulating Traffic Flows under Uncertain Network State
Autor: Wu, Manxi, a další
Vydáno: (2020) -
Signaling Game-based Misbehavior Inspection in V2I-enabled Highway Operations
Autor: Wu, Manxi, a další
Vydáno: (2021) -
Securing Infrastructure Facilities: When Does Proactive Defense Help?
Autor: Wu, Manxi, a další
Vydáno: (2018) -
Online Learning in Unknown Markov Games
Autor: Tian, Yi, a další
Vydáno: (2022)