Machine Learning Predictors of Extreme Events Occurring in Complex Dynamical Systems
The ability to characterize and predict extreme events is a vital topic in fields ranging from finance to ocean engineering. Typically, the most-extreme events are also the most-rare, and it is this property that makes data collection and direct simulation challenging. We consider the problem of der...
Prif Awduron: | Guth, Stephen Carrol, Sapsis, Themistoklis Panagiotis |
---|---|
Awduron Eraill: | Massachusetts Institute of Technology. Department of Mechanical Engineering |
Fformat: | Erthygl |
Iaith: | English |
Cyhoeddwyd: |
MDPI AG
2020
|
Mynediad Ar-lein: | https://hdl.handle.net/1721.1/125399 |
Eitemau Tebyg
-
Extreme Events: Mechanisms and Prediction
gan: Farazmand, Mohammad M, et al.
Cyhoeddwyd: (2021) -
An exploration of data-driven techniques for predicting extreme events in intermittent dynamical systems
gan: Guth, Stephen Carrol.
Cyhoeddwyd: (2020) -
Discovering and forecasting extreme events via active learning in neural operators
gan: Pickering, Ethan, et al.
Cyhoeddwyd: (2024) -
Data-assisted reduced-order modeling of extreme events in complex dynamical systems
gan: Vlachas, Pantelis, et al.
Cyhoeddwyd: (2019) -
Are extreme dissipation events predictable in turbulent fluid flows?
gan: Blonigan, Patrick J., et al.
Cyhoeddwyd: (2020)