Changes in the Electrical Characteristics of Perovskite Solar Cells with Aging Time

The last decade has witnessed the impressive progress of perovskite solar cells (PSCs), with power conversion efficiency exceeding 25%. Nevertheless, the unsatisfactory device stability and current–voltage hysteresis normally observed with most PSCs under operational conditions are bottlen...

Full description

Bibliographic Details
Main Authors: Mahapatra, Apurba, Parikh, Nishi, Kumar, Pawan, Kumar, Manoj, Prochowicz, Daniel, Kalam, Abul, Tavakoli, Mohammad Mahdi, Yadav, Pankaj
Other Authors: Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Format: Article
Published: Multidisciplinary Digital Publishing Institute 2020
Online Access:https://hdl.handle.net/1721.1/125417
Description
Summary:The last decade has witnessed the impressive progress of perovskite solar cells (PSCs), with power conversion efficiency exceeding 25%. Nevertheless, the unsatisfactory device stability and current–voltage hysteresis normally observed with most PSCs under operational conditions are bottlenecks that hamper their further commercialization. Understanding the electrical characteristics of the device during the aging process is important for the design and development of effective strategies for the fabrication of stable PSCs. Herein, electrochemical impedance spectroscopical (IS) analyses are used to study the time-dependent electrical characteristics of PSC. We demonstrate that both the dark and light ideality factors are sensitive to aging time, indicating the dominant existence of trap-assisted recombination in the investigated device. By analyzing the capacitance versus frequency responses, we show that the low-frequency capacitance increases with increasing aging time due to the accumulation of charges or ions at the interfaces. These results are correlated with the observed hysteresis during the current–voltage measurement and provide an in-depth understanding of the degradation mechanism of PSCs with aging time.