Satellite soil moisture observations predict burned area in Southeast Asian peatlands

Fires that emit massive amounts of CO2 and particulate matter now burn with regularity in Southeast Asian tropical peatlands. Natural peatlands in Southeast Asia are waterlogged for most of the year and experience little or no fire, but networks of canals constructed for agriculture have drained vas...

Full description

Bibliographic Details
Main Authors: Dadap, Nathan C, Cobb, Alexander R., Hoyt, Alison May, Harvey, Charles F, Konings, Alexandra G
Other Authors: Singapore-MIT Alliance in Research and Technology (SMART)
Format: Article
Language:English
Published: IOP Publishing 2020
Online Access:https://hdl.handle.net/1721.1/125438
Description
Summary:Fires that emit massive amounts of CO2 and particulate matter now burn with regularity in Southeast Asian tropical peatlands. Natural peatlands in Southeast Asia are waterlogged for most of the year and experience little or no fire, but networks of canals constructed for agriculture have drained vast areas of these peatlands, making the soil vulnerable to fire during periods of low rainfall. While soil moisture is the most direct measure of peat flammability, it has not been incorporated into fire studies due to an absence of regional observations. Here, we create the first remotely sensed soil moisture dataset for tropical peatlands in Sumatra, Borneo and Peninsular Malaysia by applying a new retrieval algorithm to satellite data from the Soil Moisture Active Passive (SMAP) mission with data spanning the 2015 El Ni&no burning event. Drier soil up to 30 days prior to fire correlates with larger burned area. The predictive information provided by soil moisture complements that of precipitation. Our remote sensing-derived results mirror those from a laboratory-based peat ignition study, suggesting that the dependence of fire on soil moisture exhibits scale independence within peatlands. Soil moisture measured from SMAP, a dataset spanning 2015-present, is a valuable resource for peat fire studies and warning systems. ©2019 The Author(s). Published by IOP Publishing Ltd.