Climate-quality calibration for low earth-orbit microwave radiometry
Improvements in radiometric calibration are needed to achieve the desired accuracy and stability of satellite-based microwave-radiometer observations intended for the production of climate data records. Linearity, stability and traceability of measurements to an SI-unit standard should be emphasized...
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Published: |
Multidisciplinary Digital Publishing Institute
2020
|
Online Access: | https://hdl.handle.net/1721.1/125553 |
Summary: | Improvements in radiometric calibration are needed to achieve the desired accuracy and stability of satellite-based microwave-radiometer observations intended for the production of climate data records. Linearity, stability and traceability of measurements to an SI-unit standard should be emphasized. We suggest radiometer design approaches to achieve these objectives in a microwave calibration-reference instrument. Multi-year stability would be verified by comparison to radio-occultation measurements. Data from such an instrument could be used for climate studies and also to transfer its calibration to weather-satellite instruments. With the suitable selection of an orbit, a climatology of the diurnal variation in the measured parameters could be compiled, which would reduce uncertainties in climate trends inferred from earlier microwave radiometers over past decades. Keywords: microwave radiometer calibration; GSICS; intercalibration |
---|