Synthesis and evaluation of agelastatin derivatives as potent modulators for cancer invasion and metastasis

The synthesis of new agelastatin alkaloid derivatives and their anticancer evaluation in the context of the breast cancer microenvironment is described. A variety of N1-alkyl and C5-ether agelastatin derivatives were accessed via application of our strategy for convergent imidazolone synthesis from...

Full description

Bibliographic Details
Main Authors: Antropow, Alyssa Hope, Xu, Kun, Buchsbaum, Rachel J., Movassaghi, Mohammad
Other Authors: Massachusetts Institute of Technology. Department of Chemistry
Format: Article
Language:English
Published: American Chemical Society (ACS) 2020
Online Access:https://hdl.handle.net/1721.1/125870
Description
Summary:The synthesis of new agelastatin alkaloid derivatives and their anticancer evaluation in the context of the breast cancer microenvironment is described. A variety of N1-alkyl and C5-ether agelastatin derivatives were accessed via application of our strategy for convergent imidazolone synthesis from a common thioester along with appropriately substituted urea and alcohol components. These agelastatin derivatives were evaluated in our three-dimensional coculture assay for the effects of mammary fibroblasts on associated breast cancer cells. We have discovered that agelastatin alkaloids are potent modulators for cancer invasion and metastasis at noncytotoxic doses. Herein, we discuss the increased potency of (-)-agelastatin E as compared to (-)-agelastatin A in this capacity, in addition to identification of new agelastatin derivatives with activity that is statistically equivalent to (-)-agelastatin E. The chemistry described in this report provides a platform for the rapid synthesis of agelastatin derivatives with excellent potency (50-100 nM) as modulators for cancer invasion and metastasis.