Entanglement Hamiltonian of Many-Body Dynamics in Strongly Correlated Systems

A powerful perspective in understanding nonequilibrium quantum dynamics is through the time evolution of its entanglement content. Yet apart from a few guiding principles for the entanglement entropy, to date, much less is known about the refined characteristics of entanglement propagation. Here, we...

Full description

Bibliographic Details
Main Authors: Zhu, W., Huang, Zhoushen, He, Yin-Chen, Wen, Xueda
Other Authors: Massachusetts Institute of Technology. Department of Physics
Format: Article
Language:English
Published: American Physical Society (APS) 2020
Online Access:https://hdl.handle.net/1721.1/126092
Description
Summary:A powerful perspective in understanding nonequilibrium quantum dynamics is through the time evolution of its entanglement content. Yet apart from a few guiding principles for the entanglement entropy, to date, much less is known about the refined characteristics of entanglement propagation. Here, we unveil signatures of the entanglement evolving and information propagating out of equilibrium, from the view of the entanglement Hamiltonian. We investigate quantum quench dynamics of prototypical Bose-Hubbard model using state-of-the-art numerical technique combined with conformal field theory. Before reaching equilibrium, it is found that a current operator emerges in the entanglement Hamiltonian, implying that entanglement spreading is carried by particle flow. In the long-time limit the subsystem enters a steady phase, evidenced by the dynamic convergence of the entanglement Hamiltonian to the expectation of a thermal ensemble. Importantly, the entanglement temperature in steady state is spatially independent, which provides an intuitive trait of equilibrium. These findings not only provide crucial information on how equilibrium statistical mechanics emerges in many-body dynamics, but also add a tool to exploring quantum dynamics from the perspective of the entanglement Hamiltonian. Keywords: Quantum entanglement; Quantum quench; Strongly correlated systems; Conformal field theory; Density matrix renormalization group; many-body techniques