Mining multi-site clinical data to develop machine learning MRI biomarkers: application to neonatal hypoxic ischemic encephalopathy

BACKGROUND: Secondary and retrospective use of hospital-hosted clinical data provides a time- and cost-efficient alternative to prospective clinical trials for biomarker development. This study aims to create a retrospective clinical dataset of Magnetic Resonance Images (MRI) and clinical records of...

Full description

Bibliographic Details
Main Authors: Weiss, Rebecca J, Bates, Sara V, Song, Ya’nan, Zhang, Yue, Herzberg, Emily M, Chen, Yih-Chieh, Gong, Maryann M., Chien, Isabel, Zhang, Lily, Murphy, Shawn N, Gollub, Randy L, Grant, P. E, Ou, Yangming
Other Authors: Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Format: Article
Language:English
Published: BioMed Central 2020
Online Access:https://hdl.handle.net/1721.1/126245
_version_ 1811078366246207488
author Weiss, Rebecca J
Bates, Sara V
Song, Ya’nan
Zhang, Yue
Herzberg, Emily M
Chen, Yih-Chieh
Gong, Maryann M.
Chien, Isabel
Zhang, Lily
Murphy, Shawn N
Gollub, Randy L
Grant, P. E
Ou, Yangming
author2 Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
author_facet Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Weiss, Rebecca J
Bates, Sara V
Song, Ya’nan
Zhang, Yue
Herzberg, Emily M
Chen, Yih-Chieh
Gong, Maryann M.
Chien, Isabel
Zhang, Lily
Murphy, Shawn N
Gollub, Randy L
Grant, P. E
Ou, Yangming
author_sort Weiss, Rebecca J
collection MIT
description BACKGROUND: Secondary and retrospective use of hospital-hosted clinical data provides a time- and cost-efficient alternative to prospective clinical trials for biomarker development. This study aims to create a retrospective clinical dataset of Magnetic Resonance Images (MRI) and clinical records of neonatal hypoxic ischemic encephalopathy (HIE), from which clinically-relevant analytic algorithms can be developed for MRI-based HIE lesion detection and outcome prediction. METHODS: This retrospective study will use clinical registries and big data informatics tools to build a multi-site dataset that contains structural and diffusion MRI, clinical information including hospital course, short-term outcomes (during infancy), and long-term outcomes (~ 2 years of age) for at least 300 patients from multiple hospitals. DISCUSSION: Within machine learning frameworks, we will test whether the quantified deviation from our recently-developed normative brain atlases can detect abnormal regions and predict outcomes for individual patients as accurately as, or even more accurately, than human experts.
first_indexed 2024-09-23T10:58:22Z
format Article
id mit-1721.1/126245
institution Massachusetts Institute of Technology
language English
last_indexed 2024-09-23T10:58:22Z
publishDate 2020
publisher BioMed Central
record_format dspace
spelling mit-1721.1/1262452022-10-01T00:20:25Z Mining multi-site clinical data to develop machine learning MRI biomarkers: application to neonatal hypoxic ischemic encephalopathy Weiss, Rebecca J Bates, Sara V Song, Ya’nan Zhang, Yue Herzberg, Emily M Chen, Yih-Chieh Gong, Maryann M. Chien, Isabel Zhang, Lily Murphy, Shawn N Gollub, Randy L Grant, P. E Ou, Yangming Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory BACKGROUND: Secondary and retrospective use of hospital-hosted clinical data provides a time- and cost-efficient alternative to prospective clinical trials for biomarker development. This study aims to create a retrospective clinical dataset of Magnetic Resonance Images (MRI) and clinical records of neonatal hypoxic ischemic encephalopathy (HIE), from which clinically-relevant analytic algorithms can be developed for MRI-based HIE lesion detection and outcome prediction. METHODS: This retrospective study will use clinical registries and big data informatics tools to build a multi-site dataset that contains structural and diffusion MRI, clinical information including hospital course, short-term outcomes (during infancy), and long-term outcomes (~ 2 years of age) for at least 300 patients from multiple hospitals. DISCUSSION: Within machine learning frameworks, we will test whether the quantified deviation from our recently-developed normative brain atlases can detect abnormal regions and predict outcomes for individual patients as accurately as, or even more accurately, than human experts. 2020-07-17T19:27:08Z 2020-07-17T19:27:08Z 2019-11 2020-06-26T11:04:42Z Article http://purl.org/eprint/type/JournalArticle 1479-5876 https://hdl.handle.net/1721.1/126245 Weiss, Rebecca J. et al. "Mining multi-site clinical data to develop machine learning MRI biomarkers: application to neonatal hypoxic ischemic encephalopathy." Journal of Translational Medicine 17 (Nov. 2019): no. 385 doi 10.1186/s12967-019-2119-5 ©2019 Author(s) en 10.1186/s12967-019-2119-5 Journal of Translational Medicine Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/ The Author(s) application/pdf BioMed Central BioMed Central
spellingShingle Weiss, Rebecca J
Bates, Sara V
Song, Ya’nan
Zhang, Yue
Herzberg, Emily M
Chen, Yih-Chieh
Gong, Maryann M.
Chien, Isabel
Zhang, Lily
Murphy, Shawn N
Gollub, Randy L
Grant, P. E
Ou, Yangming
Mining multi-site clinical data to develop machine learning MRI biomarkers: application to neonatal hypoxic ischemic encephalopathy
title Mining multi-site clinical data to develop machine learning MRI biomarkers: application to neonatal hypoxic ischemic encephalopathy
title_full Mining multi-site clinical data to develop machine learning MRI biomarkers: application to neonatal hypoxic ischemic encephalopathy
title_fullStr Mining multi-site clinical data to develop machine learning MRI biomarkers: application to neonatal hypoxic ischemic encephalopathy
title_full_unstemmed Mining multi-site clinical data to develop machine learning MRI biomarkers: application to neonatal hypoxic ischemic encephalopathy
title_short Mining multi-site clinical data to develop machine learning MRI biomarkers: application to neonatal hypoxic ischemic encephalopathy
title_sort mining multi site clinical data to develop machine learning mri biomarkers application to neonatal hypoxic ischemic encephalopathy
url https://hdl.handle.net/1721.1/126245
work_keys_str_mv AT weissrebeccaj miningmultisiteclinicaldatatodevelopmachinelearningmribiomarkersapplicationtoneonatalhypoxicischemicencephalopathy
AT batessarav miningmultisiteclinicaldatatodevelopmachinelearningmribiomarkersapplicationtoneonatalhypoxicischemicencephalopathy
AT songyanan miningmultisiteclinicaldatatodevelopmachinelearningmribiomarkersapplicationtoneonatalhypoxicischemicencephalopathy
AT zhangyue miningmultisiteclinicaldatatodevelopmachinelearningmribiomarkersapplicationtoneonatalhypoxicischemicencephalopathy
AT herzbergemilym miningmultisiteclinicaldatatodevelopmachinelearningmribiomarkersapplicationtoneonatalhypoxicischemicencephalopathy
AT chenyihchieh miningmultisiteclinicaldatatodevelopmachinelearningmribiomarkersapplicationtoneonatalhypoxicischemicencephalopathy
AT gongmaryannm miningmultisiteclinicaldatatodevelopmachinelearningmribiomarkersapplicationtoneonatalhypoxicischemicencephalopathy
AT chienisabel miningmultisiteclinicaldatatodevelopmachinelearningmribiomarkersapplicationtoneonatalhypoxicischemicencephalopathy
AT zhanglily miningmultisiteclinicaldatatodevelopmachinelearningmribiomarkersapplicationtoneonatalhypoxicischemicencephalopathy
AT murphyshawnn miningmultisiteclinicaldatatodevelopmachinelearningmribiomarkersapplicationtoneonatalhypoxicischemicencephalopathy
AT gollubrandyl miningmultisiteclinicaldatatodevelopmachinelearningmribiomarkersapplicationtoneonatalhypoxicischemicencephalopathy
AT grantpe miningmultisiteclinicaldatatodevelopmachinelearningmribiomarkersapplicationtoneonatalhypoxicischemicencephalopathy
AT ouyangming miningmultisiteclinicaldatatodevelopmachinelearningmribiomarkersapplicationtoneonatalhypoxicischemicencephalopathy