Field-deployable viral diagnostics using CRISPR-Cas13
Mitigating global infectious disease requires diagnostic tools that are sensitive, specific, and rapidly field deployable. In this study, we demonstrate that the Cas13-based SHERLOCK (specific high-sensitivity enzymatic reporter unlocking) platform can detect Zika virus (ZIKV) and dengue virus (DENV...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
American Association for the Advancement of Science (AAAS)
2020
|
Online Access: | https://hdl.handle.net/1721.1/126385 |
_version_ | 1826211254209871872 |
---|---|
author | Myhrvold, Cameron Freije, Catherine A. Gootenberg, Jonathan S Abudayyeh, Omar O. Metsky, Hayden C. Durbin, Ann F Kellner, Max J. Tan, Amanda L. Paul, Lauren M. Parham, Leda A. Garcia, Kimberly F. Barnes, Kayla G. Chak, Bridget Mondini, Adriano Nogueira, Mauricio L. Isern, Sharon Michael, Scott F. Lorenzana, Ivette Yozwiak, Nathan L. MacInnis, Bronwyn L. Bosch, Irene Gehrke, Lee Zhang, Feng Sabeti, Pardis C. |
author2 | McGovern Institute for Brain Research at MIT |
author_facet | McGovern Institute for Brain Research at MIT Myhrvold, Cameron Freije, Catherine A. Gootenberg, Jonathan S Abudayyeh, Omar O. Metsky, Hayden C. Durbin, Ann F Kellner, Max J. Tan, Amanda L. Paul, Lauren M. Parham, Leda A. Garcia, Kimberly F. Barnes, Kayla G. Chak, Bridget Mondini, Adriano Nogueira, Mauricio L. Isern, Sharon Michael, Scott F. Lorenzana, Ivette Yozwiak, Nathan L. MacInnis, Bronwyn L. Bosch, Irene Gehrke, Lee Zhang, Feng Sabeti, Pardis C. |
author_sort | Myhrvold, Cameron |
collection | MIT |
description | Mitigating global infectious disease requires diagnostic tools that are sensitive, specific, and rapidly field deployable. In this study, we demonstrate that the Cas13-based SHERLOCK (specific high-sensitivity enzymatic reporter unlocking) platform can detect Zika virus (ZIKV) and dengue virus (DENV) in patient samples at concentrations as low as 1 copy per microliter. We developed HUDSON (heating unextracted diagnostic samples to obliterate nucleases), a protocol that pairs with SHERLOCK for viral detection directly from bodily fluids, enabling instrument-free DENV detection directly from patient samples in <2 hours. We further demonstrate that SHERLOCK can distinguish the four DENV serotypes, as well as region-specific strains of ZIKV from the 2015–2016 pandemic. Finally, we report the rapid (<1 week) design and testing of instrument-free assays to detect clinically relevant viral single-nucleotide polymorphisms. |
first_indexed | 2024-09-23T15:03:02Z |
format | Article |
id | mit-1721.1/126385 |
institution | Massachusetts Institute of Technology |
language | English |
last_indexed | 2024-09-23T15:03:02Z |
publishDate | 2020 |
publisher | American Association for the Advancement of Science (AAAS) |
record_format | dspace |
spelling | mit-1721.1/1263852022-10-02T00:17:36Z Field-deployable viral diagnostics using CRISPR-Cas13 Myhrvold, Cameron Freije, Catherine A. Gootenberg, Jonathan S Abudayyeh, Omar O. Metsky, Hayden C. Durbin, Ann F Kellner, Max J. Tan, Amanda L. Paul, Lauren M. Parham, Leda A. Garcia, Kimberly F. Barnes, Kayla G. Chak, Bridget Mondini, Adriano Nogueira, Mauricio L. Isern, Sharon Michael, Scott F. Lorenzana, Ivette Yozwiak, Nathan L. MacInnis, Bronwyn L. Bosch, Irene Gehrke, Lee Zhang, Feng Sabeti, Pardis C. McGovern Institute for Brain Research at MIT Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences Massachusetts Institute of Technology. Department of Biological Engineering Harvard University--MIT Division of Health Sciences and Technology Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology. Institute for Medical Engineering & Science Mitigating global infectious disease requires diagnostic tools that are sensitive, specific, and rapidly field deployable. In this study, we demonstrate that the Cas13-based SHERLOCK (specific high-sensitivity enzymatic reporter unlocking) platform can detect Zika virus (ZIKV) and dengue virus (DENV) in patient samples at concentrations as low as 1 copy per microliter. We developed HUDSON (heating unextracted diagnostic samples to obliterate nucleases), a protocol that pairs with SHERLOCK for viral detection directly from bodily fluids, enabling instrument-free DENV detection directly from patient samples in <2 hours. We further demonstrate that SHERLOCK can distinguish the four DENV serotypes, as well as region-specific strains of ZIKV from the 2015–2016 pandemic. Finally, we report the rapid (<1 week) design and testing of instrument-free assays to detect clinically relevant viral single-nucleotide polymorphisms. NIH (Grants AI-100190, 1R01-HG009761, 1R01-MH110049, and 1DP1-HL141201) 2020-07-24T19:30:22Z 2020-07-24T19:30:22Z 2018-04 2018-01 2019-10-08T13:05:22Z Article http://purl.org/eprint/type/JournalArticle 0036-8075 1095-9203 https://hdl.handle.net/1721.1/126385 Myhrvold, Cameron et al. "Field-deployable viral diagnostics using CRISPR-Cas13." Science 360, 6387 (April 2018): 444-448 © 2017 The Authors en http://dx.doi.org/10.1126/science.aas8836 Science Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf American Association for the Advancement of Science (AAAS) PMC |
spellingShingle | Myhrvold, Cameron Freije, Catherine A. Gootenberg, Jonathan S Abudayyeh, Omar O. Metsky, Hayden C. Durbin, Ann F Kellner, Max J. Tan, Amanda L. Paul, Lauren M. Parham, Leda A. Garcia, Kimberly F. Barnes, Kayla G. Chak, Bridget Mondini, Adriano Nogueira, Mauricio L. Isern, Sharon Michael, Scott F. Lorenzana, Ivette Yozwiak, Nathan L. MacInnis, Bronwyn L. Bosch, Irene Gehrke, Lee Zhang, Feng Sabeti, Pardis C. Field-deployable viral diagnostics using CRISPR-Cas13 |
title | Field-deployable viral diagnostics using CRISPR-Cas13 |
title_full | Field-deployable viral diagnostics using CRISPR-Cas13 |
title_fullStr | Field-deployable viral diagnostics using CRISPR-Cas13 |
title_full_unstemmed | Field-deployable viral diagnostics using CRISPR-Cas13 |
title_short | Field-deployable viral diagnostics using CRISPR-Cas13 |
title_sort | field deployable viral diagnostics using crispr cas13 |
url | https://hdl.handle.net/1721.1/126385 |
work_keys_str_mv | AT myhrvoldcameron fielddeployableviraldiagnosticsusingcrisprcas13 AT freijecatherinea fielddeployableviraldiagnosticsusingcrisprcas13 AT gootenbergjonathans fielddeployableviraldiagnosticsusingcrisprcas13 AT abudayyehomaro fielddeployableviraldiagnosticsusingcrisprcas13 AT metskyhaydenc fielddeployableviraldiagnosticsusingcrisprcas13 AT durbinannf fielddeployableviraldiagnosticsusingcrisprcas13 AT kellnermaxj fielddeployableviraldiagnosticsusingcrisprcas13 AT tanamandal fielddeployableviraldiagnosticsusingcrisprcas13 AT paullaurenm fielddeployableviraldiagnosticsusingcrisprcas13 AT parhamledaa fielddeployableviraldiagnosticsusingcrisprcas13 AT garciakimberlyf fielddeployableviraldiagnosticsusingcrisprcas13 AT barneskaylag fielddeployableviraldiagnosticsusingcrisprcas13 AT chakbridget fielddeployableviraldiagnosticsusingcrisprcas13 AT mondiniadriano fielddeployableviraldiagnosticsusingcrisprcas13 AT nogueiramauriciol fielddeployableviraldiagnosticsusingcrisprcas13 AT isernsharon fielddeployableviraldiagnosticsusingcrisprcas13 AT michaelscottf fielddeployableviraldiagnosticsusingcrisprcas13 AT lorenzanaivette fielddeployableviraldiagnosticsusingcrisprcas13 AT yozwiaknathanl fielddeployableviraldiagnosticsusingcrisprcas13 AT macinnisbronwynl fielddeployableviraldiagnosticsusingcrisprcas13 AT boschirene fielddeployableviraldiagnosticsusingcrisprcas13 AT gehrkelee fielddeployableviraldiagnosticsusingcrisprcas13 AT zhangfeng fielddeployableviraldiagnosticsusingcrisprcas13 AT sabetipardisc fielddeployableviraldiagnosticsusingcrisprcas13 |